
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution unlimited

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO
THE ARMY BRIGADE COMMANDER IN A LITTORAL

CAMPAIGN

by

Juan K. Ulloa

June 2001

 Thesis Advisor: Eugene P. Paulo
 Second Reader: Arnold H. Buss

Form SF298 Citation Data

Report Date
("DD MON YYYY")
15 Jun 2001

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT
TO THE ARMY BRIGADE COMMANDER IN A LITTORAL
CAMPAIGN

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Naval Postgraduate School Monterey, CA 93943-5138

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
161

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO THE ARMY
BRIGADE COMMANDER IN A LITTORAL CAMPAIGN

Juan K. Ulloa–Major, United States Army
B.S., United States Military Academy, 1990

Master of Science in Operations Research–June 2001
Advisor: Eugene P. Paulo, Department of Operations Research

Second Reader: Arnold H. Buss, Department of Operations Research

Since the end of the Cold War, the Army has been engaged in an unprecedented number
of joint contingency operations that run the gamut from humanitarian efforts in Cuba and
Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in Southwest Asia.
These operations, the result of an increasingly complex international security
environment, hint at future missions involving American forces aimed at protecting U.S.
interests worldwide.

To engage and defeat future threats to our national security, the Army must
transform itself into a more strategically responsive, lethal force. The Army is faced with
the challenge of lightening the force while simultaneously increasing its survivability and
lethality. Reach-back technologies from sea, air, and space can provide Army units with
added lethality without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface
Fire Support (NSFS) to provide indirect fire in support of brigade-sized units. The Fire
Support Simulation Tool (FSST) takes the capabilities and limitations of weapon systems
being studied and simulates their employment in the context of a well-defined scenario
for analysis. The output from the simulation provides the input for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST
can help decision-makers determine the effectiveness of NSFS within the context of the
scenario being considered. The results of this analysis determined that although a myriad
of issues such as training, mistrust, and synchronization must be addressed to make
reach-back fires successful, there is strong quantitative and analytical evidence to support
the effectiveness of NSFS to an Army Brigade commander engaged in a littoral
campaign.

DoD KEY TECHNOLOGY AREA: Battlespace Environments, Command, Control,
and Communications, Computing and Software, Conventional Weapons, Modeling and
Simulation.

KEYWORDS: NSFS, simulation, Java, FCS, IBCT, Artillery, DD21, DD-21, Paladin,
Crusader.

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Effectiveness of Naval Surface Fire Support to the
Army Brigade Commander in a Littoral Campaign

6. AUTHOR(S) Major Juan K. Ulloa

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Since the end of the Cold War, the Army has been engaged in an unprecedented number of joint contingency
operations that run the gamut from humanitarian efforts in Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to
full scale war in Southwest Asia. These operations, the result of an increasingly complex international security environment,
hint at future missions involving American forces aimed at protecting U.S. interests worldwide.

To engage and defeat future threats to our national security, the Army must transform itself into a more strategically
responsive, lethal force. The Army is faced with the challenge of lightening the force while simultaneously increasing its
survivability and lethality. Reach-back technologies from sea, air, and space can provide Army units with added lethality
without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface Fire Support (NSFS) to provide
indirect fire in support of brigade-sized units. The Fire Support Simulation Tool (FSST) takes the capabilities and limitations
of weapon systems being studied and simulates their employment in the context of a well-defined scenario for analysis. The
output from the simulation provides the input for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST can help decision-makers determine
the effectiveness of NSFS within the context of the scenario being considered. The results of this analysis determined that
although a myriad of issues such as training, mistrust, and synchronization must be addressed to make reach-back fires
successful, there is strong quantitative and analytical evidence to support the effectiveness of NSFS to an Army Brigade
commander engaged in a littoral campaign.

15. NUMBER OF
PAGES

14. SUBJECT TERMS NSFS, Simulation, Java, FCS, IBCT, Artillery, DD21, DD-21, Paladin,
Crusader, Combat Modeling, Field Artillery, Naval Gunfire.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution unlimited

EFFECTIVENESS OF NAVAL SURFACE FIRE SUPPORT TO THE ARMY
BRIGADE COMMANDER IN A LITTORAL CAMPAIGN

Juan K. Ulloa

Major, United States Army
B.S., United States Military Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author: ___
Juan K. Ulloa

Approved by: ___
Eugene P. Paulo, Thesis Advisor

Arnold H. Buss, Second Reader

James N. Eagle, Chairman

Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Since the end of the Cold War, the Army has been engaged in an unprecedented

number of joint contingency operations that run the gamut from humanitarian efforts in

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in

Southwest Asia. These operations, the result of an increasingly complex international

security environment, hint at future missions involving American forces aimed at

protecting U.S. interests worldwide.

To engage and defeat future threats to our national security, the Army must

transform itself into a more strategically responsive, lethal force. The Army is faced with

the challenge of lightening the force while simultaneously increasing its survivability and

lethality. Reach-back technologies from sea, air, and space can provide Army units with

added lethality without encumbering them further.

This thesis analyzes the ability of the Army to effectively utilize Naval Surface

Fire Support (NSFS) to provide indirect fire in support of brigade-sized units. The Fire

Support Simulation Tool (FSST) takes the capabilities and limitations of weapon systems

being studied and simulates their employment in the context of a well-defined scenario

for analysis. The output from the simulation provides the input for the analysis of NSFS.

By comparing the utility of several well-constructed courses of action, the FSST

can help decision-makers determine the effectiveness of NSFS within the context of the

scenario being considered. The results of this analysis determined that although a myriad

of issues such as training, mistrust, and synchronization must be addressed to make

reach-back fires successful, there is strong quantitative and analytical evidence to support

 vi

the effectiveness of NSFS to an Army Brigade commander engaged in a littoral

campaign.

 vii

DISCLAIMER
The views in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. The reader is

cautioned that computer programs developed in this research may not have been

exercised for all cases of interest. While every effort has been made, within the time

available, to ensure that the programs are free of computational and logic errors, they

cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION ...1
A. BACKGROUND ..2
B. THE ARMY OF THE FUTURE – BREAKING THE PARADIGM..........4

1. Interim Brigade Combat Team ..5
2. Future Combat System – Objective Force...6

C. ARMY OPERATIONS..6
1. Principles of War ...7
2. Tenets of Army Operations ...9
3. Fire Support in the AirLand Battle..11

(a) The Army Fire Support Team ..12
(b) Naval Gunfire..13

D. THE ARMY OF THE FUTURE AND NAVAL SURFACE FIRE
SUPPORT...13

E. FIRE SUPPORT WEAPONS CAPABILITIES AND LIMITATIONS
OVERVIEW...14
1. Year 2005 (IBCT)...14
2. Year 2015 (FCS-OF) ..15

F. THESIS STRUCTURE ...16

II. RESEARCH METHODOLOGY ...17
A. OBJECTIVE ..17
B. DETERMINING THE MEASURES OF EFFECTIVENESS...................17

1. Maximize Reliability ..19
2. Maximize Flexibility ..20
3. Maximize Lethality ..22

C. DECISION MATRIX ..23
D. SIMULATION – DEVELOPING A FIRE SUPPORT SIMULATION

TOOL (FSST) ...24
1. Why Simulation..25
2. Java and SIMKIT Overview...26
3. Queuing Theory ...27
4. Event Graph Development ..29
5. The Simulation ...31

(a) Simulation Overview ...31
(b) Target Arrivals..33
(c) Target Servicing..34
(d) Target Engagement...36
(e) Mission Success...36
(f) Rejected Missions ..37
(g) When a Shooter Runs Out of Ammunition............................38
(h) Collateral Damage ..38
(i) Coverage Area ...38

E. SCENARIO DEVELOPMENT ..38

 x

1. Scenario 1 – IBCT..40
2. Scenario 2 – FCS-OF ...40

F. COA DEVELOPMENT ..40
1. Organic Army Fire Support Only. ...41

(a) IBCT ..42
(b) FCS..43

2. NSFS Only ..43
(a) IBCT ..44
(b) FCS..45

3. Organic Army Fire Support with Reinforcing Army Fires...........45
(a) IBCT ..46
(c) FCS..46

4. Organic Army Fire Support with Reinforcing Naval Fires...........46
(a) IBCT ..47
(b) FCS..48

G. CONFIRMING THE ACCURACY OF THE MODEL.............................48
1. Input ..48

(a) Weapons Characteristics...48
(b) Area of Operations and Battlefield...49
(c) Attack Guidance..50
(d) Success Parameters ...50

2. Output ...51
(a) Common-Sense..51
(b) Sequential ..52
(c) Parameterization...52

III. ANALYSIS OF SIMULATION OUTPUT..55
A. OVERVIEW...55
B. DESIGN OF THE EXPERIMENT..56

1. Experiment ...56
2. Data Analysis ..57

(a) Verification..57
(b) Insight..58

3. Analysis of Variance (ANOVA)..59
4. Sensitivity to Weights ..62

C. LIMITATIONS OF THE ANALYSIS ...67
1. Input and Output ...67
2. Decision Aid..67

IV. CONCLUSIONS ..69
A. RESULTS ...69
B. ISSUES ..70
C. RECOMMENDATIONS FOR FURTHER RESEARCH71

1. Further Development of the FSST ...71
(a) Graphical User Interface and Target Distribution Model71
(b) Survivability...76
(c) Expand the Types of Ammunition the Simulation Models ...76

 xi

(d) Modify Modeling of Time of Flight..77
2. Fire Support Optimization Based on Threat...................................77
3. Cost Analysis of Army Fire Support Systems77

D. SUMMARY AND CONCLUSIONS ..78

APPENDIX 1: IBCT RAW DATA...81

APPENDIX 2: FCS RAW DATA...87

APPENDIX 3: MAUT FUNCTION ...93

APPENDIX 4: FSST PROGRAM..95
A. INSTANCE METHODS ...95

1. AO..95
2. BattlefieldData..96
3. Shooter ..104
4. Target..106
5. TargetState ...108
6. TargetArrivalProcess...109
7. TargetServer2 ...110

B. MAIN METHODS...117
1. FSST50Replications.java...117
2. FSSTGetCA.java..121

C. PROPERTIES FILE EXAMPLES ..125
1. IBCT: Army with Reinforcing NSFS ...125
2. FCS: Army with Reinforcing NSFS ...128

BIBLIOGRAPHY..133

INITIAL DISTRIBUTION LIST...135

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF FIGURES

Figure 2.1: Objectives Tree .. 19
Figure 2.2: Reliability Objectives Tree.. 19
Figure 2.3: Flexibility Objectives Tree.. 21
Figure 2.4: Lethality Objectives Tree.. 23
Figure 2.5: Event Graph ... 30
Figure 2.6: Sample Scenario Graphic .. 32
Figure 2.7: Fire Mission Engagement Process.. 35
Figure 2.8: IBCT COA 1A ... 42
Figure 2.9: FCS COA 2A... 43
Figure 2.10: IBCT COA 1B.. 44
Figure 2.11: FCS COA 2B ... 45
Figure 2.12: IBCT COA 1C.. 46
Figure 2.13: FCS COA 2C ... 46
Figure 2.14: IBCT COA 1D ... 47
Figure 2.15: FCS COA 2D ... 48
Figure 3.1: Boxplot of IBCT COA’s ... 61
Figure 3.2: Boxplot of FCS COA’s... 62
Figure 3.3: Boxplots of Different Weightings for IBCT.. 63
Figure 3.4: Boxplots of Different Weightings for FCS.. 64
Figure 3.5: Boxplot of IBCT Utility .. 66
Figure 4.1: Unique Dual Triangular Distribution .. 72
Figure 4.2: Inverted Pyramid .. 73
Figure 4.3: Picture of Density of Targets on the Battlefield. Dark indicates higher density 74
Figure 4.4: Un-symmetrical Bivariate Dual Triangular Distribution .. 75
Figure 4.5: Sample polar coordinate bivariate distributions (From: Eagle). 76
Figure 4.6: Condensed Objective Tree... 79

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 2.1: Distribution of Mission Types... 33
Table 2.2: Distribution of Target Types... 34
Table 2.3: COA Overview.. 41
Table 2.4: Hardware Parameter Overview ... 41
Table 2.5: Area of Operations and Battlefield Parameters... 50
Table 2.6: Target Engagement and Success Criterion ... 51
Table 3.1: Experimental Design .. 57
Table 3.2: Mean MOE Performance.. 57
Table 3.3: IBCT COA Comparison using T Method... 60
Table 3.4: FCS COA Comparison using T Method... 60
Table 3.5: Comparison of IBCT COA 1C and 1D (Collateral Damage = 50%)............................... 65
Table 3.6: Comparison of IBCT COA’s (Fire Mission Time = 40%, Collateral Damage = 40%)..... 66

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF SYMBOLS, ACRONYMS, AND/OR ABBREVIATIONS

AO Area of Operations
APC Armored Personnel Carrier
APL Applied Physics Lab
CA Coverage Area
CD Collateral Damage
COA Course of Action
FA Field Artillery
FM Fire Mission
FM Field Manual
FMT Fire Mission Time
FSST Fire Support Simulation Tool
GUI Graphical User interface
IDI Infantry Dug In
IIO Infantry in the Open
JHUAPL Johns Hopkins University Applied Physics Lab
LSV Light Skinned Vehicle
MAUT MultiAttribute Utility Theory
MOE Measure of Effectiveness
NAS Number of Available Shooters
NPS Naval Postgraduate School
NSFS Naval Surface Fire Support
PED Probable Error in Deflection
PER Probable Error in Range
PF Percent Fired
PS Percent Successful
TOF Time of Flight
TPS Total Percent Successful
US United States

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

The author would like to thank the following individuals and organizations for

their help and support:

I would like to thank the Johns Hopkins University Applied Physics Lab for

sponsoring my thesis research. Specifically, I would like to thank Jack Keane and Ted
Smyth who were instrumental in setting up and executing a wonderful thesis tour. I
would also like to thank Stephen Orloff and Vinnie Broderick who took me under their
broad wings while at JHUAPL.

I want to also thank Lieutenant Colonel Eugene P. Paulo for his time and patience

as my thesis advisor. His guidance, mentorship, and wisdom throughout the development
of this thesis were absolutely critical. His encouragement is the reason this thesis even
exists.

I also would like to extend a special thanks to my second reader, Assistant

Professor Arnold H. Buss. His class on simulation and his part in the creation of SIMKIT
sparked the idea behind creating the Fire Support Simulation Tool.

I would like to thank my mother and father for encouraging me to aspire to learn

and to have an open mind. I love you both!

Finally, I thank my wife, Heidi, and my children – Madeline, Juan, and Isabelle.

You are God’s blessing to me and I love you all very much!

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

Since the end of the Cold War, the Army has been engaged in an unprecedented

number of joint contingency operations that run the gamut from humanitarian efforts in

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in

Southwest Asia. Over the last ten years, there has been a steady increase in rapid-

deployment, multi-dimensional, joint contingency missions to combat these threats. As

we move into the 21st century these missions will certainly become more and more

complex and more commonplace. To meet the increased requirements to engage and

defeat new threats to our national security, the Army must transform itself into a more

strategically responsive, lethal force that is dominant across a broad spectrum of military

operations such as peace-keeping, combating criminal and terrorist activities, and full

scale war. The Army must fully develop its capabilities as an integrated, joint force able

to synchronize the lethal and non- lethal fires of all services at the brigade level. Reach-

back technologies from sea, air, and space can provide Army units with added lethality

without encumbering them further. This thesis analyzes the effectiveness of Naval

Surface Fire Support (NSFS) for use in supporting land-based Army forces in the littoral.

Rather than simply analyzing the different characteristics and specifications of available

indirect fire weapon systems to determine their effectiveness, a model was created. This

model, the Fire Support Simulation Tool (FSST), takes the capabilities and limitations of

the weapon systems being studied and simulates their employment in the context of a

well-defined scenario. This thesis analyzes the data produced by the FSST to draw some

broad conclusions about the future of indirect fire support for Army operations.

 xxii

The objective of this thesis is to determine the effectiveness of NSFS to the Army

at brigade level and below in a littoral campaign. The objective was further defined in

terms of seven measures of effectiveness or MOE’s – average fire mission time,

percentage of missions fired, percentage of fired missions that were successful,

percentage of total missions that were successful, percentage of the area of operations

that were covered by indirect fires, number of rounds that caused collateral damage, and

the average number of firing platforms available to fire other missions or mass fires.

Several courses of action (COA’s) were created, each modeling a different task

organization of indirect fires to support an Army maneuver brigade. The first COA

includes three Army artillery batteries, the second has three naval surface support ships,

the third has six Army artillery batteries, and the fourth has three Army artillery batteries

and three ships. Each of these COA’s was compared in two separate scenarios. The first

scenario models fires in support of the Army Interim Brigade Combat Team (IBCT)

during the year 2005, and the second models fires in support of the Army Future Combat

Systems (FCS) during the year 2015.

The simulation accounted for the environment and the specific characteristics of

the weapon systems in each COA to create data for each simulation run. By weighting

the importance of each MOE, multi-attribute utility theory was used to combine the data

for a COA into a single measure of its effectiveness. Since each simulation run was

governed by a large number of random events, replicating a specific COA and scenario

gave a range of values for each of the MOE’s. This in turn yielded a range of values for

the effectiveness of each COA. The final distribution of scores of the COA’s was then

compared to determine which one was the best for each scenario.

 xxiii

The results of the simulation show that by combining the strengths of Army

artillery and naval gunfire, an Army Brigade commander can organize a fire support team

that is better able to support his missions than a pure strategy. Although effectiveness is

strongly dependent on the weighting scheme the commander adopts for the MOE’s, this

thesis has demonstrated that there can be an added benefit to using NSFS that should be

explored further.

Although this thesis provides evidence supporting the use of NSFS in a support of

Army operations in the littorals, there are a myriad of issues such as training, mistrust,

and synchronization that must be addressed to make these types of joint campaigns

successful. In the final analysis, it was determine tha t there is strong quantitative and

analytical evidence to support the effectiveness of NSFS to an Army Brigade commander

engaged in a littoral campaign.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION
Since the end of the Cold War, the Army has been engaged in an unprecedented

number of joint contingency operations that run the gamut from humanitarian efforts in

Cuba and Haiti to peace-enforcing and peace-keeping in Bosnia to full scale war in

Southwest Asia.

With the emergence of an increasingly complex international security
environment, sources of conflict and tension are increasing. Sources of
unrest and conflict range from competition between states to the instability
caused by the collapse of states unable to meet the strains of resource
scarcity, population growth, and ethnic and religious militarism. The
technology enabling real-time transmission of information from any point
on the globe has facilitated the rise of sub-national and transnational
groups, including criminal and terrorist elements that may pursue
objectives that threaten U.S. interests (Shinseki, Statement to 106th
Congress, p. 3).

Over the last ten years, there has been a steady increase in rapid-deployment,

multi-dimensional, joint contingency missions to combat these threats. As we move into

the 21st century these missions will certainly become more and more complex and more

commonplace. To meet the requirement to engage and defeat these threats to our

national security, the Army must transform itself into a more strategically responsive,

lethal force. This force must be dominant across a broad spectrum of military operations

ranging from peace-keeping and humanitarian missions, to missions combating criminal

and terrorist activities, to winning the nations wars on a military budget that continues to

shrink and be scrutinized by public opinion. General Shinseki’s vision for the Army is

one of transformation from a Legacy Force designed to defeat Soviet forces in Europe to

an Objective Force designed to preempt and if necessary defeat threats from all corners of

the globe. This transformation will ultimately result in a force designed to take

advantage of technology to facilitate the ability to rapidly deploy forces and to

2

synchronize and integrate combat power through the design of compatible systems

throughout the Army, Navy, Air Force, and the Marines.

Based on General Shinseki’s vision, the Army must be capable of deploying one

Brigade anywhere in the world within 96 hours, have an entire Division on the ground

within 120 hours, and have five Divisions on the ground within 30 days. This mission

leaves the Army with the challenge of lightening the force while simultaneously

increasing its survivability and lethality. To do that, the Army must break free from the

paradigm of a self-sufficient and self-contained force. It must fully develop its

capabilities as an integrated, joint force able to synchronize the lethal and non-lethal fires

of all services at the brigade level.

This thesis analyzes the effectiveness of Naval Surface Fire Support (NSFS) for

use in supporting land-based Army forces in the littoral. Rather than simply analyzing

the different characteristics and specifications of available indirect fire weapon systems

to determine their effectiveness, a model was created. This model, the Fire Support

Simulation Tool (FSST), takes the capabilities and limitations of the weapon systems

being studied and simulates their employment in the context of a well-defined scenario.

This thesis analyzes the data produced by the FSST to draw some broad conclusions

about the future of indirect fire support for Army operations.

A. BACKGROUND

Mastering the employment of naval gunfire is a documented part of the training of

all Army forward observers and Field Artillery officers. Currently, however, the

mechanism for synchronizing and integrating naval gunfire into Army operations is

vaguely defined and is a process of trial and error that could take hours or days to

3

adequately refine. Although the technology to effectively synchronize naval gunfire with

Army operations in the littorals has existed for quite some time, there has never been a

pressing need for the Army to rely on naval gunfire to support its operations. In the past,

once deployed and fighting on the ground, Army forces have been relatively self-

sufficient, with additional fires being considered a bonus rather than a necessity.

However, in order to quickly deploy a brigade sized force that is both survivable and

lethal in the most austere of environments characterized by a nonlinear battlefield, the

Army must change not only the structure of its force, but also the mindset of its leaders.

We must admit that we need the support of our sister services to accomplish not only our

missions, but also the missions of our country. As we move forward into the 21st century

and the Army transforms from a Legacy to an Objective Force, the need for additional

lethal and non- lethal fires that are quick and responsive is paramount. We must design

the capability to allow the near simultaneous engagement of the enemy anywhere he can

be seen and engaged with precision fires from all applicable mediums of land, air, space,

and sea. Those fires must be quickly and easily integrated into a seamless joint operation

that for example might include Army forces on the ground with EW support from space,

close air support from the Air Force, and air defense and NSFS in the littorals from the

Navy.

On 06 March 2000, the Navy took a huge leap in the right direction by tasking the

Johns Hopkins Applied Physics Lab (JHAPL) with identifying and refining potential

opportunities “…for NSFS asset employment in support of Army Future Combat System

Objective Force operations and force employment” (JHU/APL Task Statement, p.1).

Through the coupling of NSFS capabilities and limitations with Army requirements for

4

the Objective Force, JHAPL is analyzing the contributions the Navy can make to Army

operations now and in the future as it designs, outfits, and fields future systems.

B. THE ARMY OF THE FUTURE – BREAKING THE PARADIGM

As we entered the Cold War in the years following World War II, the Army

prepared for battle against the monolithic threat from the Soviet Union and her allies.

That force was designed to fight and defeat a large armored enemy on a linear battlefield

in Europe. This basic force structure and design eventually lead to the Army we know

today as the Legacy Force.

The battles of the future will not be linear. They will consist of multi-

dimensioned battlefields against enemies that could include criminals, terrorists, and

dictators in obscure locations. The enemy will practice guerrilla warfare, he will have

weapons of mass destruction, and he will exercise information warfare with impunity.

He will be a student of our history. He will know that we lack commitment to long,

drawn out conflicts, that we are averse to a high casualty rate, and that we are sensitive to

international opinion and hence have a fear of collateral damage. He will know our

strengths and weaknesses and work diligently to exploit them and defeat us. We must

meet and defeat this new enemy threat by changing our tactics.

The fact that battlefields of the future will be multi-dimensional and nonlinear,

emphasizes the necessity to develop a capability to exploit knowledge of the situation to

preempt enemy actions. We must develop the capability to be a full spectrum force that

is agile, flexible, and adaptive. This force must balance precision strike with precision

maneuver, as well as deploy quickly and sustain itself logistically for long periods of

time. We have to be able to integrate all combined, joint, and other available assets

5

quickly and easily into a synchronized plan. We must develop the full dimension

operational capability to rapidly and simultaneously hit the enemy from all angles and

sustain that pressure until the enemy capitulates. To do this, we must free ourselves from

the paradigm of a cumbersome, hard to deploy, heavily-armored force designed to do

battle on the steppes of Russia and the deserts of the Middle East.

Our new force must exceed the lethality of our old force through overwhelming

firepower gained by synchronizing and using assets from space, air, and sea that are not

part of its internal structure. And, our new force must exceed the survivability of our old

force by its ability to move quickly and hide when necessary, by having a short logistics

trail, by exercising tactical and operational mobility far in excess of what the enemy is

capable of. Future and developing technology will make this new force unmatched on

the battlefield, Soldiers on Point for the Nation, Persuasive in Peace, Invincible in war.

1. Interim Brigade Combat Team

The Interim Brigade Combat Team (IBCT) is a force being developed using

today’s technology to accomplish the objectives outlined in General Shinseki’s vision for

the transformation of the Army. By 2005 the Army will have the capability of putting

one brigade in the air in 96 hours, one Division on the ground in 120 hours, and five

Divisions on the ground in 30 days. The IBCT will be capable of accomplishing the

intent behind the transformation of the Army to the Objective Force using today’s

technology. By 2005 the Army projects that at least five Divisions will have IBCT

brigades. Not all Divisions in the Army will be outfitted using the IBCT platform,

however; some will be transformed directly from their current configurations to the

Objective Force. The IBCT is basically an interim solution to deployability shortcomings

6

of the legacy force, and will serve as a test bed for the future technologies that will be

used when the Objective Force is fielded.

2. Future Combat System – Objective Force

The FCS-OF is the force of the future and will be fielded by 2015. The weapon

systems, communications architecture, digital systems, vehicles, etc for that force are

being designed based on technology projected to be available in 2015. By designing all

aspects of the Objective Force including the structure from the ground up, this force will

be fully integrated internally as well as integrated with the other services and our allies to

the maximum extent possible. This integration and cutting-edge technology will make

the Objective Force the most lethal, survivable, and mobile force ever employed.

C. ARMY OPERATIONS

To accurately model the reality of combat, it is imperative that a broad base line

of Army doctrine and the fundamentals of fire support are understood and accounted for.

Knowing doctrine offers insight into what assumptions can be made and how they will

affect the simulation. Since gaining a basic understanding of Army doctrine is so crucial

to understanding what this thesis is attempting to measure and how, included are a few

short, concise paragraphs on the doctrine and tactics behind Army operations.

Doctrine for all Army Operations are outlined in the Army Field Manual

designated FM 100-5. Although that doctrine is updated slightly from time to time,

“[f]undamental to operating successfully across the full range of military operations is an

understanding of the Army's doctrinal foundations the principles of war and the tenets of

Army operations” (FM 100-5, Chapter 2). Below is a brief definition of those timeless

7

concepts, which will help the reader to understand the doctrine behind how the Army

fights and wins.

1. Principles of War

The nine principles of war provide general guidance for the conduct of
war at the strategic, operational, and tactical levels. They are the enduring
bedrock of Army doctrine. The US Army pub lished its first discussion of
the principles of war in a 1921 Army training regulation. The original
principles adopted by the Army, although slightly revised, have withstood
the test of time. Today's force-projection Army recognizes the following
nine principles of war (FM 100-5, Chapter 2).

- Objective. Essentially every conflict has an ultimate objective. All

military operations should be focused on attaining that objective. Actions and

intermediate operations that do not contribute to attaining the ultimate objective should

be avoided.

- Offensive. Offensive operations seize that initiative from the enemy.

They make him react to us. They are the most effective and decisive actions that can be

taken to obtain the objective.

- Mass. Mass the effects of overwhelming combat power at the decisive

place and time.

Synchronizing all the elements of combat power where they will have
decisive effect on an enemy force in a short period of time is to achieve
mass. To mass is to hit the enemy with a closed fist, not poke at him with
fingers of an open hand. Mass must also be sustained so the effects have
staying power. Thus, mass seeks to smash the enemy, not sting him. This
results from the proper combination of combat power with the proper
application of other principles of war. Massing effects, rather than
concentrating forces, can enable numerically inferior forces to achieve
decisive results, while limiting exposure to enemy fire (FM 100-5, Chapter
2).

8

- Economy of Force. The principle behind Economy of Force is to allocate

the minimum amount of combat power to secondary, low threat, and/or low priority

efforts. Effective use of this prinicple allows for the maximum massing of combat power

where it is most needed.

- Maneuver. Place the enemy in a position of disadvantage through the

flexible application of combat power.

Maneuver is the movement of forces in relation to the enemy to gain
positional advantage. Effective maneuver keeps the enemy off balance and
protects the force. It is used to exploit successes, to preserve freedom of
action, and to reduce vulnerability. It continually poses new problems for
the enemy by rendering his actions ineffective, eventually leading to
defeat. At all levels of war, successful application of maneuver requires
agility of thought, plans, operations, and organizations. It requires
designating and then shifting points of main effort and the considered
application of the principles of mass and economy of force. At the
operational level, maneuver is the means by which the commander
determines where and when to fight by setting the terms of battle,
declining battle, or acting to take advantage of tactical actions. Maneuver
is dynamic warfare that rejects predictable patterns of operations (FM 100-
5, Chapter 2).

- Unity of Command. For every effort or operation there should be one

commander whose goal it is to synchronize all assets into an operation aimed at attaining

the objective. Unity of command helps us mass our combat power at the decisive place

and time.

- Security. Security of the force gives the commander flexibility by

reducing the enemy’s opportunity to surprise us and reducing our vulnerability.

- Surprise. Strike the enemy at a time or place or in a manner for which he

is unprepared.

9

Surprise can decisively shift the balance of combat power. By seeking
surprise, forces can achieve success well out of proportion to the effort
expended. Rapid advances in surveillance technology and mass
communication make it increasingly difficult to mask or cloak large-scale
marshaling or movement of personnel and equipment. The enemy need
not be taken completely by surprise but only become aware too late to
react effectively. Factors contributing to surprise include speed, effective
intelligence, deception, application of unexpected combat power,
operations security (OPSEC), and variations in tactics and methods of
operation. Surprise can be in tempo, size of force, direction or location of
main effort, and timing. Deception can aid the probability of achieving
surprise (FM 100-5, Chapter 2).

- Simplicity. Prepare plans and orders in a manner that is clear and concise.

Tired leaders and soldiers have a difficult time issuing and following complex, unclear

plans. A mediocre but simple plan executed vigorously and flawlessly is superior to a

perfect, complex plan whose execution is laden with mistakes and misunderstandings.

2. Tenets of Army Operations

Whenever Army forces are called upon to fight, they fight to win. Army
forces in combat seek to impose their will on the enemy; in operations
other than war, they seek to alter conditions to achieve their purpose.
Victory is the objective, no matter the mission. Nothing short of victory is
acceptable. The Army's doctrine describes its approach to generating and
applying forces and force at the strategic, operational, and tactical levels.
The Army's success on and off the battlefield depends on its ability to
operate in accordance with five basic tenets: initiative, agility, depth,
synchronization, and versatility. A tenet is a basic truth held by an
organization. The fundamental tenets of Army operations doctrine
describe the characteristics of successful operations. All training and
leadership doctrine and all combat, combat support, and combat service
support doctrine derive directly from, and must support, the fundamental
tenets. The US Army believes that its five basic tenets are essential to
victory. In and of themselves they do not guarantee victory, but their
absence makes it difficult and costly to achieve (FM 100-5, Chapter 2).

- Initiative. Initiative is gained by action. It implies an offensive mindset

and is gained by creating options for your own forces while constraining the options of

your foe. Initiative on the battlefield requires leaders to anticipate events at all levels so

10

their forces can act and react quicker than the enemy. In the attack it means gaining the

initiative through surprise and maintaining the initiative through a fast, aggressive tempo

that keeps the enemy in a constant state of disorientation. In the defense it means quickly

turning the tables and shifting to the offensive. Initiative requires decentralization of

decision-making authority to the lowest practical level, while maintaining a synchronized

effort. Initiative is our ability to control where we fight, when we fight, and under what

conditions we fight.

- Agility. Agility is our ability to react quicker than the enemy. It gives us

the ability to quickly concentrate our forces on enemy weaknesses. Agility is needed to

acquire and retain the initiative.

- Depth. Depth is the extension of the dimensionality of operations.

Considering the depth of the battlefield involves consideration of space, time, resources,

information, and the objective. Attacking in depth involves disrupting and defeating the

enemy in these areas simultaneously. Employing our forces in depth involves using all

available assets maximally. “Depth allows commanders to sustain momentum and take

advantage of all available resources to press the fight, attacking enemy forces and

capabilities simultaneously throughout the battlefield. Momentum in the attack and

elasticity in defense derive from depth” (FM 100-5, Chapter 2).

- Synchronization. Synchronization is arranging activities in time and

space to mass combat power at the decisive point and time. Synchronization of the fight

gives us the ability to attack the enemy at multiple points with multiple assets in depth,

sequentially, and simultaneously.

11

- Versatility. A versatile Army can adapt to meet diverse mission

requirements.

It suggests that all military organizations must have the ability to organize
in different combinations of units and the capacity to redeploy from one
area or region to another without the loss of focus. Versatility is the result
of well- led, well- trained, and well-equipped forces; high standards; and
detailed planning. Versatility ensures that units can conduct many
different kinds of operations, either sequentially or simultaneously, with
the same degree of success (FM 100-5, Chapter 2).

3. Fire Support in the AirLand Battle

AirLand Battle encompasses the three aspects of an operation: the deep operation,

close operation, and rear operation. Deep operations attack the enemy in the battlespace

beyond the close fight. Deep operations shape the close fight. Forces that are in

immediate contact with the enemy are involved in close operations. Generally close

operations are considered to be the current fight at the Corps and lower levels. Rear

operations are generally protection and sustainment operations in the rear areas of our

force. They can be targets of enemy deep operations. All three of these aspects of the

AirLand battle must be executed simultaneously by the maneuver commander in order to

defeat the enemy.

Fire support assets in the AirLand battle include all indirect-fire weapons, armed

aircraft, and other lethal and non-lethal means. It includes mortars, field artillery, naval

gunfire, and air delivered weapons, which include all conventional, chemical, and tactical

nuclear munitions. Nonlethal means include EW, illumination, and smoke. The purpose

behind fire support is to support the scheme of maneuver, mass fires, and delay, disrupt,

or destroy enemy forces in depth. Fire support destroys, neutralizes, and suppresses the

12

enemy through synchronizing all fire support assets with the scheme of maneuver to

accomplish the mission.

The field artillery is the principal means of fire support available to the maneuver

commander, and is doctrinally responsible for the integration of all fire support assets in

support of the maneuver commander’s plan. As the senior coordinator of all fire support

assets, the fire support coordinator (FSCOORD) from the field artillery is responsible for

the integration of all fire support means to support the maneuver commander in the close,

deep, and rear fight.

(a) The Army Fire Support Team

(1) Forward Observers. Forward observers are considered

the eyes of the artillery. They identify the target and determine the location of the target

in a manner that can be pinpointed on a military map. Based on the information they

have about the target (posture, speed, dispersion, etc.) and the environment the target is in

(snow, swamp, open fields, etc.) the forward observer formulates a fire mission using the

following three separate transmissions:

• Observer identification and warning order. In this transmission the observer

identifies himself and lets the fire direction center (FDC) know what type of fire mission

he is going to request (example: fire for effect).

• Target location. In this transmission the observer tells the FDC the location of

the target.

• Description of target, method of engagement, and method of fire and control.

Finally, the observer describes the target (example: enemy platoon in the open),

13

designates a method of engagement (example: high angle, high explosive), and a method

of fire and control (example, at my command).

(2) Fire Direction. The FDC is the brains of the artillery.

The FDC takes this request for fire and formulates an actual fire mission based on the

tactical situation, the location of the howitzers, and available munitions. He develops

technical firing data (what direction and elevation to fire, which munitions, and what

amount and type of propellant) for the howitzers. This technical firing data is passed to

the howitzers.

(3) Howitzers. The howitzers are the brawn of the artillery.

They take the fire mission data from the FDC, load that data into the howitzer, and fire

the mission.

(b) Naval Gunfire

Calling in Naval gunfire is similar to calling in field artillery. The forward

observer is still the eyes, but the fire direction and the gun systems are linked together as

one and execute the mission as a unit. There are several challenges to calling in Naval

gunfire. The format of the fire missions are different, the communications nets are

different (HF versus FM), and the ballistic trajectories, types of munitions, etc can be

very different. These differences create difficulties in calling for and adjusting naval

gunfire, but for the purposes of this thesis most of these difficulties will be modeled using

one or two simple parameters to be discussed later.

D. THE ARMY OF THE FUTURE AND NAVAL SURFACE FIRE SUPPORT

The Army has always been a self-sufficient force capable of sustained ground

operations. Other than logistics requirements, the Army has also been capable of

executing its missions independent of the other services once deployed. This capability is

14

a desirable one, and was a necessity when the United States alongside NATO was poised

for combat against the Soviet Union and the Warsaw Pact. In order to create a force that

has the rapid deployment capability of the Objective Force, the Army must reduce its

logistic footprint and maximize its ability to integrate and utilize fires from other sources.

Reducing the logistic footprint is accomplished by the development of equipment that

shares many common parts; the development of lighter, more lethal, multi-purpose

munitions; and by reducing the size of the force without reducing its lethality.

Reducing the size of the force without diminishing its lethality is accomplished by

cultivating and developing the ability for reach-back fires and effects. These fires and

effects can include EW and ADA support from ships in the area, electronic support and

laser munitions from space, deep and close strike support from the Air Force, Navy, and

Marines, and fire support from adjacent Marine, Army, Naval assets, just to name a few.

This thesis focuses on the effectiveness of reach-back fires from NSFS assets in range of

Army operations in the littoral.

E. FIRE SUPPORT WEAPONS CAPABILITIES AND LIMITATIONS
OVERVIEW

For simplicity the only assets analyzed and compared are field artillery and Naval

guns in Battery mass missions. The effect of mortar fire is not included in the analysis.

The data below include only what is needed to conduct the thesis.

1. Year 2005 (IBCT)

By year 2005 the Army expects to have five Divisions outfitted with IBCT

brigades. This force will be designed with current off-the-shelf technology and will meet

the CSA’s intent of one brigade deployed in 96 hours, one Division on the ground in 120

hours, and five Divisions on the ground in 30 days.

15

The primary indirect fire weapon system used by the IBCT will be the Paladin

howitzer. The Paladin is capable of firing up to eight rounds in one minute and can

engage targets up to 30,000 meters away using a high explosive round. The howitzer and

its ammunition support vehicle can carry 138 complete rounds, and there will be six

Paladin howitzers and ammunition support vehicles in an artillery battery (Paladin,

WebSite for Defence Industries).

The primary ship that will provide naval gunfire in support of Marine and Army

units will be the DDG-51, a destroyer. The DDG-51 is currently being upgraded, and

should be capable of engaging targets up to 63 nautical miles away or about 112,300

meters (Lisiewski and Whitmann).

2. Year 2015 (FCS-OF)

By the year 2015 the Army will have fielded the FCS-OF. The capabilities and

limitations of the weapons systems available for the Objective Force are projections

based on Army and Navy requirements statements for the Crusader howitzer and the DD-

21.

The primary indirect fire weapon system organic to the Objective Force will be a

futuristic howitzer designated as the Crusader throughout this analysis. The Crusader

should be capable of firing ten rounds in one minute and engaging targets at ranges

greater than 40,000 meters. The howitzer and its ammunition support vehicle should be

able to carry around 160 complete rounds (Crusader, WebSite for Defence Industries).

The primary ship that will provide naval gunfire in support of Marine and Army

units will be the DD-21. The DD-21 will be capable of engaging targets up to 100

nautical miles away (about 178,200 meters). The DD-21 is projected to have two guns

16

per ship with a maximum firing rate of 24 rounds per minute and a magazine capacity of

over 1200 rounds (Lisiewski and Whitmann).

F. THESIS STRUCTURE

Chapter II will describe the methodology used in identifying the measures of

effectiveness, creating and implementing the courses of action (COA) and scenarios for

the simulation, and developing the logic, assumptions, and interactions that drive the

simulation. Chapter III will provide a detailed analysis of the output from each scenario

and COA. Chapter IV will summarize the results of the simulation, outline conclusions

and insights gained from the simulation, and provide recommendations for further

research of this subject.

17

II. RESEARCH METHODOLOGY

A. OBJECTIVE

The objective of this thesis is to determine the effectiveness of NSFS to the Army

at brigade level and below in a littoral campaign. In order to determine the effectiveness

of NSFS, the objective is defined in terms of measures of effectiveness or MOE’s. The

process of determining the MOE’s begins by defining the problem statement in several

more concise sub-objectives, called top- level objectives. When the top- level objectives

are met, the system being measured or analyzed is effective. The process continues by

successively redefining each of the higher- level objectives with lower- level objectives

that are needed to satisfy them. These objectives continue to be redefined until they are

quantitative in nature. These quantitative objectives are the bottom-level objectives or

MOE’s (Armstrong, p. 4-3).

These objectives are assembled in a tree-like structure beginning with the

problems statement at the top and ending with the MOE’s at the bottom. The final

product shows the methodology used to determine the MOE’s. This is a clear and

concise picture of the problem statement and the data needed to analyze the problem

effectively.

B. DETERMINING THE MEASURES OF EFFECTIVENESS

Effectiveness of any fire support asset can be analyzed by considering its ability

to satisfy the following four objectives: Reliability, Lethality, Flexibility, and

Survivability. Those four objectives are lower- level objectives to the overall objective of

measuring the effectiveness of NSFS.

18

While all four objectives are important, for the purposes of this study differences

in survivability between systems can be assumed to be negligible and are therefore not

included. Survivability of an asset is how robust that system is on the battlefield. It

involves issues such as maintainability, ability to withstand harsh conditions, protection

of the crew, and ability to hide from, evade, or withstand enemy indirect and direct fire

systems. To measure the survivability of a particular indirect fire system may require a

very detailed simulation that could measure and replicate the enemy’s ability to attrit or

reduce the effectiveness of the system, account for the effects of weather and other

conditions that affect maintenance, and a host of other contributors and detractors from

survivability. The focus of this thesis is on the effectiveness of indirect fire systems,

specifically the capability of NSFS to engage enemy targets to standard for the Army.

Although survivability cannot be discounted, we make the assumption that the

survivability of the assets being compared is reasonably similar and can be mitigated to

the point where they are negligible in this study. In short, survivability, although

important is not the crux of this analysis, and should be considered separately.

Dissecting the remaining top- level objectives in turn gives a quantitative way of

analyzing the effectiveness of NSFS. The top-level objectives for determining the

effectiveness of NSFS are shown in Figure 2.1 below.

19

Maximize
Reliability

Maximize
Flexibility

Maximize
Lethality

To maximize the effectiveness of lethal indirect fires
available to Army Objective Force commanders
at Brigade level and below in locations within

 reach of Navy ship fires.

Figure 2.1: Objectives Tree

1. Maximize Reliability

Reliability is an important part of integrating an asset into an operation. For an

Army brigade commander to effectively integrate and synchronize the indirect fires into

an operation, he must know that the asset will deliver its munitions on target at the

prescribed place and time. The Reliability objectives tree below outlines the procedure

and thought process behind determining the measurable, bottom-level tasks that

determine the reliability of indirect fires.

Maximize Percentage
of Missions Fired

(%)

Maximize Percentage
of Successful Missions

(%)

Maximize
ability to

Respond to Fire Missions

Minimize Average
Mission Time

(time)

Maximize
Timeliness/

Mission Response Time

Maximize
Reliability

Figure 2.2: Reliability Objectives Tree

To a brigade commander reliability of indirect fires generally consists of two

screening criterion: (1) capability of an asset to respond to and engage various threats and

20

(2) timeliness in its response to the request for indirect fires. Quantifying each of these

objectives results in the lowest level objectives needed to measure reliability. These

lowest level measurable objectives are the percentage of missions that the asset was

capable of engaging, the percentage of those missions that were successful, and the time

that each asset took to engage each threat.

The percentage of missions that each COA could engage encompassed the

brigade commander’s first criteria for reliable indirect fires. This bottom-level objective

tells the brigade commander whethe r the assets at his disposal can cover a sector of his

tactical plan with the ammunition available.

The percentage of successful missions pertains to the second of the brigade

commander’s criterion. Measuring the percentage of successfully engaged targets of

those that could be engaged tells the brigade commander how responsive the indirect

fires are to his requests. It measures their ability to reliably engage the targets he wants

engaged and inflict the requisite damage on those targets.

The average time to engage targets is a measure of the timeliness of the indirect

fires in a particular COA. This pertains to the brigade commander’s third criterion. The

objective tree for reliability is shown in Figure 2.2.

2. Maximize Flexibility

Flexibility is the ability of an asset to perform and successfully accomplish

diverse missions. Flexibility includes more than the ability to range targets. It includes

having the right munitions to engage hardened targets and having the precision to engage

targets that are positioned in awkward or protected locations. The three sub-objectives

listed below were identified as crucial to measuring flexibility.

21

High precision allows an asset to be used to engage targets that are in close

proximity to friendly troops or noncombatants. By measuring the number of errant

rounds that induce collateral damage in each scenario, the simulation can measure the

precision of indirect fires in that scenario. By carefully modeling this parameter,

collateral damage for different environments can be measured. For example, in a rural

setting, on average, collateral damage might only be induced by 0.1 percent of the rounds

that are errant by 200 or more meters, while in an urban setting, collateral damage might

occur with a 50% chance if a single round misses its mark by more than 50 meters.

These specific parameters are included in the scenario.

Maximizing coverage allows one asset to provide indirect fires in the maximal

number of situations. By measuring the percentage of the area of operations covered by

indirect fires, we can compare the differences in different courses of action.

Ultimately, maximizing flexibility consists of the following two bottom-level,

measureable objectives: number of rounds that cause collateral damage and percentage of

the area of operations that is covered by indirect fires. The objectives tree for

maximizing flexibility is shown below in Figure 2.3.

Minimize theNumber
of Rounds that Cause

Collateral Damage
(#)

Minimize
Errant Rounds

Maximize the Percentage of
the Area of Operation

with indirect fire coverage
(%)

Maximize
Coverage

Maximize
Flexibility

Figure 2.3: Flexibility Objectives Tree

22

3. Maximize Lethality

Lethality is the cornerstone of Army operations. Without lethality, or the

perception of lethality, we are ineffective. Precision and massing of indirect fires attains

lethality.

By maximizing the availability of artillery at any given moment, we can measure

the extent to which we can mass fires. It is worthwhile to note that although this

objective is listed under lethality, it is really a multidimensional objective that gives the

commander a measure of flexibility and reliability as well. The average availability of

firing platforms indicates how likely it is that at any given moment he can effectively

engage a target (reliability), and can serve as an indicator to the commander that he has

the flexibility to shift assets and move assets on the battlefield to enhance his ability to

engage the enemy. Ultimately, maximizing the availability of firing platforms provides

the commander with the lethality he needs to mass indirect fires, the flexibility he needs

to move assets on the battlefield, and the reliability he wants to immediately engage

targets as they become available.

A single fire mission supports the overall mission of the organization by doing its

part in the concept of the operation. By maximizing the total percentage of missions

engaged successfully, the success of the mission is maximized. This differs from the

reliability measurement, since it only measures the percentage of missions that result in

success of the ones engaged (# success/# engaged * 100%), while reliability measures the

percentage of targets successfully engage with respect to the total number that arrive (#

success/total * 100%). The objectives tree for maximizing lethality is shown below in

Figure 2.4.

23

Maximize number
of available firing platforms

(average number of
available firing platforms)

Maximize Availability
of Indirect Fires Assets

Maximize
Ability to Mass Indirect Fires

Maximize the
Percentage of Missions
Engaged Successfully

(%)

Maximize
Mission Success

Maximize
Lethality

Figure 2.4: Lethality Objectives Tree

C. DECISION MATRIX

The top- level objectives of each objectives tree are those objectives that are most

important for measuring the effectiveness of indirect fires to the brigade commander,

while the bottom-level objectives provide a quantifiable and measurable method of

comparing the performance of the top- level objective under different scenarios. These

bottom-level objectives are measures of effectiveness (MOE’s) for the top- level

objectives. They are the quantitative data that help the decision-maker pick a COA.

To measure the effectiveness of each COA, multi-attribute utility theory or

MAUT, was used. This method provides a simple, relatively intuitive way to weight and

quantify the value of very different decision-making criterion. To use MAUT, two basic

assumptions must be met:

1. It must be possible for the decision maker to consider and
judge the relative weight of any combination of factors. That is, it
must be possible to consider not only the weight of factor 1 (F1),
but also the weight of both F1 and F2.

2. Weights are assumed to be additive. That is, given the weight
of F1 and the weight of F2, the weight of both F1 and F2 is the sum
of their individual weights (Canada and Sullivan, p223).

24

If both of these assumptions hold, the decision maker can measure and compare

the effectiveness of each COA in a given scenario us ing MAUT. First, the decision-

maker or his representative weights each of the MOE’s based on its relative importance.

Each raw score for each MOE in a particular COA is then compared with the

corresponding raw scores from each other COA. The “best” raw score is assigned a

utility of 1, while the “worst” raw score is assigned a utility of 0. Utility of the remaining

MOE’s is assumed to be linear, and is computed using the following formula, where i =

MOE number, j = COA number:

 Utility Score MOEi,j = (xi,j-worsti,j)/(besti,j-worsti,j), ∀ i,j

To get the utility score for MOE1,1 (1st MOE for the 1st COA), the raw score of the

worst1,1 is first subtracted from x1,1. This quantity is then divided by the raw score of the

worst1,1 subtracted from the best1,1.

The total utility of each COA is computed using the following formula:

∑
=

∀
n

i
jjiji WEIGHTMOE

1
,, * L

The best COA is the COA with highest total utility score (Canada and Sullivan, p.

228).

D. SIMULATION – DEVELOPING A FIRE SUPPORT SIMULATION TOOL
(FSST)

The Fire Support Simulation Tool (FSST) is a discrete-event simulation written in

the programming language JAVA. The simulation uses Simkit, a discrete-event

simulation package created by Assistant Professor Arnold H. Buss and LT Kurt Stork

written in JAVA (Stork, 1996).

25

The objective of the FSST is to obtain the raw MOE data for each COA as

determined by the value systems design described earlier. Although high-fidelity

simulations exist that can provide the raw MOE data, they are cumbersome, complex

simulations that take days, weeks, and even months to prepare and execute. Even then,

these simulations do not package the output in a way that can be easily interpreted.

The objective of the FSST is to provide the user with a portable simulation that

can be prepared and executed in minutes, is simple to use, and provides results in an

easy-to-read and understand format using intuitive analysis techniques that anyone can

understand. The intent of the simulation is to provide quick, broad insight into the

advantages and disadvantages of different task organizations of indirect fire assets (each

task organization represents a different COA), and to provide a quantitative measure of

the effectiveness of that task organization. By investigating a well-selected sample of

COA’s the effectiveness of NSFS can be determined.

1. Why Simulation

Because of the complex, stochastic nature of this problem, there is no closed-form

solution to measuring the effectiveness of NSFS. Because of this, simulation is good tool

to investigate the effectiveness of NSFS using the MOE’s outlined above (Law and

Kelton, p. 6). By accounting for the stochastic nature of target arrival times and fire

mission times, a simulation can draw a complete picture of the strengths and weaknesses

of each COA in terms of the MOE’s and their variances when applicable. This is

powerful information for a decision-maker and offers valuable insight into the

performance of the assets being evaluated. For example, a commander who is very

concerned with success of critical fire missions might choose an asset that is more stable

26

(has lower variance in success rate) over one that is more chaotic with a higher average

success rate. This simulation should reveal those chaotic behaviors allowing the

commander to make a more informed decision. Since this simulation is easy to set-up

and execute, it should also allow any staff to quickly create and run multiple courses of

action (COA’s) for each scenario. The staff can then present the results and their analysis

and their best scenarios to the decision-maker, expanding his flexibility and offering even

more insight into the behavior of his assets in his environment.

2. Java and SIMKIT Overview

Java is an object-oriented language that is ideal for this simulation. By depicting

processes, entities, and actions as objects, Java creates a tangible, intuitive, expandable,

model of reality in its programs. This coupled with the fact that Java is a high- level,

powerful, platform independent programming language makes it an ideal programming

tool for this thesis. Simkit is a flexible simulation tool kit that allows the coupling of

many independent objects into one complex simulation. Taken as whole, Simkit and

Java offer unmatched flexibility and robustness for creating a simulation tool.

Simkit is a discrete-event simulation tool that uses next-event time advance. A

discrete-event simulation models a system as it changes state over time. Next-event time

advance simulations model only the changes in the environment, such as arrival of a

target firing of a target, etc. (Law and Kelton, p. 6). By contrast, fixed-increment time

advance simulations model the state of the system at each discrete time-step. For the

purpose of this thesis, the discrete event simulation will be discussed within the context

of the next-event time advance model. This method facilitates modeling the behavior of

the fire support battle by maintaining a high level of time fidelity while reducing run

27

times by fast-forwarding to the times in the COA that are eventful. For example, by

running a time-step scenario of a peacekeeping mission, we might find that we execute a

specific fire mission once every three months or 7,776,000 seconds plus the actual

(insignificant) mission execution time. If we ran this simulation 1,000,000 times faster

than real time, and we wanted mission times in seconds, it would take an average of

7.776 seconds per trial and 7,776 seconds or over two hours to execute 1000 trials to get

confidence interval and variance data. By using an event-based simulation, if average

mission times were ten minutes, we would only have to execute that ten minutes for each

trial. This would take an average of 0.0006 seconds per trial and about 0.6 seconds to

execute 1000 trials. While both methods are viable and work, one is clearly a better

choice.

3. Queuing Theory

In general terms, queuing systems consist of one or more servers that provide a

service to an arriving customer. Customers arrive at discrete times for service. When

they find that all servers are busy they generally enter one or more queues in front of the

server. Queuing models attempt to model the behavior of queuing systems by

quantifying the interarrival and interservice times of the customers and the servers (Law

and Kelton, p. 94).

The arrival and service of customers at a gas station fit the description of a system

that can be modeled using queuing theory. At a gas station, customers arrive and are

serviced in much the same manner that fire missions arrive and are serviced by available

indirect fire assets. This analogy is surprisingly accurate, as will be explained below.

28

Consider for example that a car arrives at the service station. There are several

different types of vehicles. For the purposes of a gas station there would probably be at

least four different types: those that run on regular unleaded, unleaded plus, super

unleaded, and diesel. Once we have decided what type of vehicle we have, we then look

for a pump that provides that type of fuel. If one is available we fuel up. If not, we get

into a line or queue.

Now, imagine fire missions as cars and indirect fire assets as the fuel pumps.

Each fire mission has attributes such as arrival time, type (armor, infantry, etc.), location,

and desired effects by the server (destroy, neutralize, or suppress). Each different type of

mission is defined by it attributes, which are analogous to the different types of cars

(diesel, unleaded, etc.).

The servers are the indirect fire platforms whose mission it is to change the status

of the target from its initial condition to one of destroyed, neutralized, or suppressed.

Each server or shooter has a list of attributes that facilitate its ability to inflict the desired

effects on the target. They include:

• the shooter’s location

• service time and distribution of each fire mission

• the shooter’s rate of fire

• lethality and accuracy of the round

• the number of gun tubes associated with the shooter

• the number of rounds the shooter has available

29

Each shooter is defined by its attributes, which are used to model the different types of

indirect fire assets such as Paladin battalions, DDG-51’s, or M198 batteries. For the

purposes of this thesis, the FSST will assume only a few of the more common fire

mission types and will limit the characteristics of the delivery systems to what is

necessary to execute those fire missions.

4. Event Graph Development

The event graph shown in Figure 2.5 is a basic depiction of how the simulation

works. The actual model is too complex to show in one simple event graph, but the basic

model is depicted below in this one-dimensional event graph of a queuing model with

one target or fire mission type and one server type.

30

Parameters
 ta = time between arrivals of targets
 tr = time between recognizing a repeat mission and it being fired
 ts = time to service the next FM in the queue
 k = total number of artillery assets available
 l = damage needed to ensure desired effects
 m = flight criterion of target
 inRange = computation to determine whether target is in range of artillery
State Variables
 TGT = number of targets that have arrived
 queue = number of targets in the queue
 REFIRE = number of missions refiired
 S = number of available artillery assets (shooters)

Target
Arrives
Request

FM

ta
Add

FM to
Queue

TGT++ queue.back()

Service
FM

S>0

ts

End
FM j

S+
+

~
BDA >= l ||
FLEE >= m

queue.dequeue
BDA = U(0,1)
FLEE = U(0,1)

BDA <l & FLEE < m~

Repeat
(add tgt
to front)

queue.front()
REFIRE++

tr

RUN

(START)

REFIRE = 0
TGT = 0
S = k

inRange

ts

Figure 2.5: Event Graph

The circle with RUN sets up the queuing model by initializing all attributes. The

simulation begins with the arrival of a target that causes the model to initiate the arrival

of another target at some discrete time, ta, in the future (circle with “Target Arrives,

Request FM”). The interarrival time, ta, of the targets is modeled by random exponential

interarrival times. When a fire mission arrives, it is queued if it is within range of a

shooter (circle with “Add FM to Queue”). The algorithm discussed above determines the

shooter whose queue that fire mission goes into. If the shooter is immediately available,

the fire mission is processed ts time units later (circle with “Attack tgt”). The parameter ts

is a function of the range from the shooter, the shooter type, and other variables.

31

Once the target is attacked, if the desired results are achieved or the target has

fled, the mission is ended (circle with “End FM”) and that shooter becomes available for

another fire mission. If that particular shooter has another fire mission in the queue, it

services that fire mission ts time units later. If the desired results are not achieved and the

target is still available, the fire mission is immediately repeated, with effects being

considered tr time units later. The parameter tr is based on the time it takes for that

particular shooter to refire the mission.

Although this event graph does not depict it, the FSST computes and maintains

the number of arrivals, the number of missions rejected for any reason (such as range or

lack of ammunition), and the number of successful and unsuccessful missions.

5. The Simulation

(a) Simulation Overview

Each arriving target is identified and engaged somewhere in a box that we

consider the area of operations. To simulate different types of missions, units, and/or

tactics the user can vary the size of that box. Throughout the battle, these targets would

be identified and engaged in different areas of the box.

The distribution of the arriving targets within the box is scenario-based,

and can be varied by the user. For instance, in a guerilla-type operation where there is no

built-up enemy, and our forces are deployed in a decentralized manner, we might expect

to acquire targets uniformly across the box since the enemy has freedom of maneuver and

he is probably much more familiar with the terrain than we are. By contrast, in a

conventional-type operation, we might expect to acquire targets uniformly across our

front and exponentially in the depth of our position since we own the ground we are

32

occupying and have well-defined boundaries that are protected. Again, to best model the

scenario, the user can vary each of these.

The user will also be able to tactically place his artillery battalions and

naval assets in the area of operations according to the scenario. Artillery and ships, once

placed, will not move throughout the scenario. Figure 2.6 is a graphic depiction of a

sample scenario with artillery and naval range fans depicting limits of engagement for

these assets. The user will be able to easily set up, simulate, and analyze a scenario like

this.

Arriving
targets are
distributed
according to
some logical
distribution
scheme based
on the
scenario
(probably
uniform) in
this region.

Arriving targets are distributed
according to some logical distribution
scheme based on the scenario
(probably exponential) in this region.

Enemy Direction
Of Advance

Figure 2.6: Sample Scenario Graphic

Each scenario involves running the simulation for each COA listed above.

By varying the inputs for the model such as parameters for the indirect fire assets and the

properties of the area of operations (dimensions and distribution of arriving targets) the

FSST can model the scenario in which each COA will occur.

33

(b) Target Arrivals

Targets arrive at a rate corresponding to a distribution. Based on past

simulations, targets probably would arrive at an exponential rate with a mean based on

the situation. This simulation allows the user to determine the arrival rate of the targets

and the mean interarrival time (i.e. exponential with mean 5.0). Each target will then be

further defined by its type – armor, armored personnel carriers, light skinned vehicles,

infantry in the open, or infantry dug in, and the mission associated with the target,

destroy, neutralize, or suppress. Again, the user can determine the percentages of each

type of target and the mission associated with each target.

An example of how the arrival process works is as follows. A random

number generator determines the arrival time of the first target. Another randomly

generated number stochastically determines the target type. A third randomly generated

number determines the mission associated with the target, and a random target location is

generated based on the distribution of the locations of targets. The first target then enters

the model, and another target arrives at a randomly generated interarrival time based on

the arrival distribution, and the process begins again. The distribution of target types and

mission types used for this thesis are shown below in tables 2.1 and 2.2.

Mission Types Percentage
Destroy 30%

Neutralize 50%
Suppress 20%

Table 2.1: Distribution of Mission Types

34

Target Types Percentages

Armor 40%

Infantry in the Open 10%

Infantry Dug In 0%

Armored Personnel Carrier 30%

Light Skinned Vehicle 20%
Table 2.2: Distribution of Target Types

(c) Target Servicing

When a target enters the model, it becomes a fire mission and is sent to a

specific artillery or naval gunfire unit called a shooter. Each shooter is queried to

determine whether it can range the particular target and whether it has the ammunition

needed to engage the target. Once it has been determined which assets can effectively

engage the target, an asset is chosen based on a weighting of the following criteria –

platform or shooter type (NSFS or field artillery), number of fire missions in that

shooter’s queue, probable error in range, and shooter to target range.

A version of MAUT is used for the selection of a shooter for each target.

The value of each of the first three criteria for a particular shooter is compared with the

corresponding values of all shooters that can effectively engage the target. Subscripting

the criteria being compared using the letter j, the utility of each shooter is computed with

respect to each criteria using the following formula:

 Utility = (xj-worstj)/(bestj-worstj)

The total utility for each shooter is then determined using the following

formula:

FANSFS
i

ii WEIGHTWEIGHTWEIGHTUtility ++

∑
=

3

1

*

35

The shooter that gets the fire mission is the one with the highest total

utility score. If no assets have the required number of rounds to effectively engage the

target, the asset with the most rounds that can range the target is chosen. The fire mission

is then put into the shooter’s queue. Figure 2.7 below is a flow chart depicting how a

specific shooter is selected.

yes

yes

yes

yes

Tgt
Arrive

In Range?

Has ammo?

Has
enough
ammo?

Discard
Shooter

no

no

no

no

Create List 1

Create List 2

List 2>0?

Pick “Best”
Shooter from
List 2 using

MAUT

Pick Shooter
from List 1

with the
most rounds

Figure 2.7: Fire Mission Engagement Process

36

The simulation tracks which assets can and do engage, the total time

between the arrival and the execution of the fire mission, the number of successful,

unsuccessful, and rejected fire missions, and the number of rounds that cause collateral

damage. It can then, through simulation, assign values to each MOE under each COA.

(d) Target Engagement

Each shooter engages targets when they are at the front of the queue and

no targets are being serviced. The processing time (tp) and engagement times (te) are

randomly determined from the distribution of the processing and engagement times

entered for that shooter, and the time of flight (tof) for the rounds is computed based on

the target range. By accounting for the rate of fire, the number of rounds desired, and the

number of guns associated with the chosen shooter the total time for the fire mission can

be computed using the following formula:

tp + te + tof + (#rounds)/(# tubes)*(rate of fire)

(e) Mission Success

The location where each round lands is determined stochastically using the

probable error in range, probable error in deflection, and shooter-target range. The

definition of success for a particular mission is pre-determined in the scenario, and is a

function of the number of rounds that land within a certain distance of the target for a

particular target type (i.e. armor) and mission type (i.e. destroy). For destroy and

neutralize missions that distance is the burst radius of the round. For suppression

missions, that distance is 2 times the burst radius since the objective is mainly to distract

and rattle the enemy, not to kill him. To determine if the mission is successful, the

simulation compares the number of hits needed with the number of hits the target has

37

already sustained plus the number of additional hits if any. If the total number of hits

sustained is greater than or equal to the number needed, the mission is successful.

If a mission is successful, the mission is ended, and the shooter fires the

next mission in the queue, or waits for the next mission if none are currently queued. If

the mission is not successful, the target “remembers” how many rounds have had the

desired effects, and the mission is repeated if 1) the target has not fled – determined

stochastically by scenario intput and 2) if the shooter still has rounds available. If both

conditions are met, the mission is repeated. If not the mission is ended and is

unsuccessful. The engagement time for repeated missions is generally faster than for the

initial volley. The assumption is that the guns are already trained on the target, and are

awaiting repeat or end of mission orders. The following formula determines the time for

repeating the mission:

tof + (#rounds)/(# tubes) / (rate of fire)

This process is repeated until either the mission is successful, the target

flees, or the shooter runs out of ammunition. The total mission time is then computed

and tallied. Successful and unsuccessful missions are also tallied.

(f) Rejected Missions

If a target cannot be engaged because there are no shooters available with

any ammunition, that mission is rejected. Rejected missions are tallied during the

simulation.

38

(g) When a Shooter Runs Out of Ammunition

If a shooter runs out of ammunition, the current mission being fired ends

successfully or unsuccessfully as outlined above, and all missions in that shooter’s queue

are rejected.

(h) Collateral Damage

Collateral damage can occur each time that a target is engaged. If a round

misses its intended target by more than a distance predetermined in the scenario, that

round can cause collateral damage. Each errant round causes a random number to be

generated, which determines stochastically whether that round causes collateral damage

according to a predetermined percentage of errant rounds that cause collateral damage (a

scenario input).

(i) Coverage Area

The area of the box that the course of action being simulated can cover is

known as the coverage area. The closer the number is to one, the better the COA is with

respect to that particular MOE. In order to determine the coverage area, the simulation is

run for the particular COA using 100,000 target arrivals to get as accurate a measurement

as possible. Additionally, each shooter is given an infinite number of rounds and the

targets arrive at a location uniformly distributed within the box. The coverage area can

then be measured by taking the number of missions accepted and dividing by the total

number of missions. This number is then input into the COA being simulated as a

parameter.

E. SCENARIO DEVELOPMENT

A scenario consists of the parameters that quantify enemy and friendly actions,

the effects of the environment and terrain on the military operation, the level at which the

39

battle is being executed, and the year in which the effectiveness of NSFS is being

measured. These parameters are kept constant for each COA within the scenario so that

COA’s can be compared using a common criterion.

Terrain quantifying parameters include the size of the area of operations (AO), the

definition of an errant round, and the probability of collateral damage by an errant round.

Enemy parameters include the rate at which targets arrive, their location in the AO, and

the target type (armor, infantry, etc.). Friendly parameters include the distribution of the

mission types (i.e. destroy, neutralize, suppress), the attack criterion for different targets

(i.e. how many rounds to fire in suppression of armor), and the definition of a successful

mission in terms of how many target hits are required to get the desired effects.

Additionally, the scenario includes the weighting scheme the decision-maker uses to

choose an asset to engage targets, which will be explained in more detail later.

The level of the battle is the echelon at which the battle is being fought. Both

scenarios for this thesis focus on providing indirect fire support for an Army brigade-

level unit. The year that the scenario models does not determine parameters for the

scenario in and of itself, rather it determines what technologies and systems are projected

to be available, which in turn dictate the parameters of the artillery platforms to be used

in each COA. This will be explained in more detail in the next section.

The terrain, enemy and friendly parameters, and level of the battle will remain

basically the same for each of the following two scenarios being modeled. Additionally,

since the objective of the thesis is to measure the effectiveness of NSFS to the Army

brigade commander, the battle for both scenarios is limited to the brigade fight. The

major differences between the two scenarios will be the year in which they occur.

40

1. Scenario 1 – IBCT

This scenario is called the IBCT scenario because it is centered upon the year

2005, and therefore limits the COA’s to equipment that is either available now or is

projected to be available by year 2005. For the field artillery, this means the M109

Paladin is available with a maximum firing range of 30,000 meters. For the naval gunfire

this means using DDG-51’s with a maximum range of 63 nautical miles (about 112,300

meters).

2. Scenario 2 – FCS-OF

The FCS-OF scenario models the effectiveness of indirect fire systems that are

projected to be available by year 2015. For the field artillery, this means the Crusader is

available with a maximum firing range of about 45,000 meters. For the naval gunfire this

means using DD-21 with guns having a maximum range of about 100 nautical miles

(about 162,000 meters).

F. COA DEVELOPMENT

Each COA is developed within the context of a specific scenario that determines

the year and the tactical and operational considerations of the battle. The year determines

the firing platforms available for the COA.

Each COA developed with the scenario includes which firing platforms are being

used, their technical capabilities and limitations, and their locations on the battlefield.

The technical capabilities and limitations of the firing platforms include maximum range,

firing rate, probable error in range and deflection, distributions for target processing and

preparation for firing, and the bursting radius of a single round.

41

The overall objective of the experiment is to measure the effectiveness of NSFS

within the context of each scenario. Carefully designing three or four COA’s in each

scenario helps to isolate the effect being measured. Tables 2.3 and 2.4 below show an

overview of the COA’s and the factors that are varied or changed for each COA.

COA (same for each Scenario) FACTORS
A B C D

Field Artillery 3 0 6 3
Naval Ships 0 3 0 3

Table 2.3: COA Overview

IBCT FCS-OF Parameter
FA NSFS FA NSFS

Number Guns 6 2 4 2
Rounds per Ship/Battery 2520 2400 2520 2400
Range (1000’s meters) 30 112 45 162
Munition Burst Radius 50 75 50 75

PER 35 100 1 10
PED 2 2 1 2

Max Rate of Fire 8 24 12 24
Acquisition Time Distribution Normal Normal Normal Normal

Mean Acquisition Time 4.0 5.0 2.0 2.5
Acquisition Std Deviation 0.75 1.0 0.25 0.5
Firing Time Distribution Normal Normal Normal Normal

Mean Firing Time 1.0 0.5 0.25 0.5
Firing Time Std Deviation 0.2 0.1 0.05 0.1

Table 2.4: Hardware Parameter Overview

1. Organic Army Fire Support Only

This COA is the base- line model for the effectiveness of Army indirect fires. It

involves running the simulation with only one organic Field Artillery battalion in direct

support of a maneuver brigade.

42

(a) IBCT

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 70000 m/min
 Paladin Battery:
 acquireServiceDistribution = Normal
 meanAcquireInterservice = 4.0
 sigmaAcquire = 0.75
 firingServiceDistribution = Normal
 meanFiringInterservice = 1.0
 sigmaFiring = 0.2
 # in rounds per minute
 maxRateOfFire = 8
 thePER = 35
 thePED = 2
 numberRounds = 2520
 shooterRange = 30000
 burstRadius = 50
 numberGuns = 6
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(24,70)

(0,0)

(FLOT)40

(6,30) (18,30)(12,30
)

Figure 2.8: IBCT COA 1A

43

(b) FCS

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 100000 m/min
 Crusader Battery:
 acquireServiceDistribution = Normal
 meanAcquireInterservice = 2.0
 sigmaAcquire = 0.25
 firingServiceDistribution = Normal
 meanFiringInterservice = 0.25
 sigmaFiring = 0.05
 # in rounds per minute
 maxRateOfFire = 12
 thePER = 1
 thePED = 1
 numberRounds = 2520
 shooterRange = 45000
 burstRadius = 50
 numberGuns = 4
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(50,120)

(0,0)

(FLOT)80

(12.5,70) (37.5,70)(25,70
)

Figure 2.9: FCS COA 2A

2. NSFS Only

This COA serves as a base- line model for the effectiveness of indirect fires

provided by naval assets. It involves running the simulation with the NSFS fire-power

equivalent of one Army field artillery battalion in direct support of a maneuver brigade.

44

(a) IBCT

(24,70)

(0,0)

(FLOT)40

(6,-40) (12,-40) (18,-40)

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 70000 m/min
 DDG 51:
 acquireServiceDistribution = Normal
 meanAcquireInterservice = 5.0
 sigmaAcquire = 1.0
 firingServiceDistribution = Normal
 meanFiringInterservice = 0.5
 sigmaFiring = 0.1
 # in rounds per minute
 maxRateOfFire = 24
 thePER = 100
 thePED = 2
 numberRounds = 2400
 shooterRange = 112000
 burstRadius = 75
 numberGuns = 2
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

Figure 2.10: IBCT COA 1B

45

(b) FCS

(50,120)

(0,0)

(FLOT)80

(12.5,-40) (25,-40) (37.5,-40)

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 100000 m/min
 DD21:
 acquireServiceDistribution = Normal
 meanAcquireInterservice = 2.5
 sigmaAcquire = 0.5
 firingServiceDistribution = Normal
 meanFiringInterservice = 0.5
 sigmaFiring = 0.1
 # in rounds per minute
 maxRateOfFire = 24
 thePER = 10
 thePED = 2
 numberRounds = 2400
 shooterRange = 162000
 burstRadius = 50
 numberGuns = 2
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

Figure 2.11: FCS COA 2B

3. Organic Army Fire Support with Reinforcing Army Fires

This COA involves adding one field artillery battalion to the base-line organic fire

support model.

46

(a) IBCT

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 70000 m/min
 Paladin Battery: See above
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(24,70)

(0,0)

(FLOT)40

(3.4,30)

(20.6,30)

(10.3,30)

(6.9,30)

(17.2,30)

(13.7,30)

Figure 2.12: IBCT COA 1C

(c) FCS

(50,120)

(0,0)

(FLOT)80

(7.1,70)

(42.8,70)

(21.4,70)

(14.3,70)

(35.7,70)

(28.6,70)

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 100000 m/min
 Crusader Battery: See above
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

Figure 2.13: FCS COA 2C

4. Organic Army Fire Support with Reinforcing Naval Fires

This COA involves adding the NSFS fire-power equivalent of one field artillery

battalion to the base- line organic fire support model.

47

(a) IBCT

(24,70)

(0,0)

(FLOT)40

(6,30) (18,30)(12,30
)

(6,-40) (12,-40) (18,-40)

The AO properties
X distribution = Uniform(0,24)
Y distribution = Exponential(50)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 70000 m/min
 Paladin Battery: See above
 DDG 51: See above
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

Figure 2.14: IBCT COA 1D

48

(b) FCS

The AO properties
X distribution = Uniform(0,50)
Y distribution = Exponential(90)
Arrival distribution = Exponential(2.5)

Shooter properties
 meanProjectileVelocity = 100000 m/min
 Crusader Battery: See above
 DD21: See above
 Weights to determine the “best” shooter
 range = 0.125
 thePER = 0.125
 numberRounds = .5
 FieldArtillery = 0.25
 NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

(50,120)

(0,0)

(FLOT)80

(12.5,70) (37.5,70)(25,70
)

(12.5,-40) (25,-40) (37.5,-40)
Figure 2.15: FCS COA 2D

G. CONFIRMING THE ACCURACY OF THE MODEL

The accuracy of this simulation was confirmed entirely by the author. The

process used was an iterative approach that included many ad-hoc techniques.

1. Input

(a) Weapons Characteristics

The data that were used for the individual weapons characteristics came

from published sources on the individual weapons. Data that were not accessible, such as

probable errors in range and acquisition times were “best guess” data that made sense.

The overall data set used for each weapon is not 100% accurate, but it is fairly close to

the actual data and is a suitable substitute to demonstrate the effectiveness of the FSST.

49

(b) Area of Operations and Battlefield

The area of operations consists of the size of the area and distribution of

targets and target types. The parameters regarding the area of operations were estimated

for each of the two scenarios from the current doctrinal battle space of an Army brigade.

The estimate accounts for the role of the future IBCT and FCS brigade sized units.

The parameters for the distribution of targets are exponential through the

depth and uniform across the breadth of the battle-space. The uniform distribution along

the breadth of the battle-space models a brigade that fights along a front with the enemy

attacking uniformly along that front. The exponential distribution models a higher

likelihood of detecting targets towards the front of the battle-space, while accounting for

enemy units that evade front- line defenses and are detected deeper within the unit’s

battle-space. The actual mean for the exponential distribution was derived by

experimenting with several until the results made sense to the author.

Additional parameters for the model dictate how likely an enemy is to flee

if not successfully engaged, the miss distance for a round to be considered errant, and the

probability of an errant round causing collateral damage. All parameters used for the

area of operations and the battlefield are shown below in Table 2.5.

50

Parameter IBCT FCS
Box: width x depth (km) 24 X 70 50 X 120
Distribution of Targets

along width (front)
Uniform Uniform

Distribution of Targets
along depth Exponential (mean = 50) Exponential (mean = 80)

Arrival Intervals (min) Exponential (mean = 2.5) Exponential (mean = 2.5)
Flee Probability 0.9 0.9

Miss Distance for Errant
Round

400 400

Probability of Collateral
Damage by Errant Round 0.01 0.01

Table 2.5: Area of Operations and Battlefield Parameters

The parameters that determine the percentage of enemy units that are

mechanized or light and the percentage of missions that are destroy, neutralize, and

suppress were selected based on the experiences of the author. Although they do not

represent a validated Army scenario, they provide the necessary information to

demonstrate and test the FSST. They were depicted earlier in Tables 2.1 and 2.2.

(c) Attack Guidance

The attack guidance parameters dictate the number of munitions to fire at

a specific target type. They were selected based on the author’s experience and are

shown below in Table 2.6 along with the parameters for a successful engagement.

(d) Success Parameters

These parameters determine the number of rounds that must score a hit on

the target to inflict the damage necessary for a successful mission. A successful “hit” for

a destroy or neutralize mission occurs when the round lands less than one burst radius

away from the target. A successful “hit” for a suppression mission is when the round

lands less than two burst radii away from the target. These parameters were selected

based on the experience and intuitions of the author.

51

Engagement Criterion (rds) Target/Mission Type
IBCT FCS

Success Criterion
(hits)

Armor
Destroy 36 18 18

Neutralize 24 12 12
Suppress 3 3 1

Infantry in the Open
Destroy 6 3 3

Neutralize 3 3 2
Suppress 3 3 1

Infantry Dug In
Destroy 24 6 6

Neutralize 9 4 4
Suppress 3 3 1

Armored Personnel Carrier

Destroy 24 12 12
Neutralize 18 9 9
Suppress 3 3 1

Light Skinned Vehicle
Destroy 18 9 9

Neutralize 12 6 6
Suppress 3 3 1

Table 2.6: Target Engagement and Success Criterion

2. Output

The accuracy of the output from the model was checked in three separate ways

throughout its development. They are discussed in detail in the following paragraphs.

(a) Common-Sense

At each stage in the development of the simulation the output was checked

to ensure it made sense based on the input parameters. An example would be when

determining the average time that it took for missions to be processed. A negative

number would not make sense. That indicated a problem in the coding or the logic.

Although not an entirely scientific approach, this method ensured that the answers made

sense.

52

(b) Sequential

The sequential method pertains to checking a portion of the simulation as

it is being developed using “canned” and oversimplified inputs. By checking each class

against the desired output the simulation was verified in the most basic case.

As the simulation grew and more and more Java classes became

interconnected, the actual answers to the output were no longer known. The experiences

from repeatedly testing and running the simulation gave the author the insight needed to

informally verify the output as the simulation became more and more complex. In this

case the output was tested and verified in the same manner, except that instead of

comparing the answer to a known solution it was simply checked to see if it made sense.

For example, suppose the simulation consisted of 15 classes that seemed to run correctly.

If another class or an enhancement of an existing class were being added that should

refine the simulation, it would be run in the generic case where the refinement should

make absolutely no difference. If that worked, the parameters would be adjusted to see if

the enhancement did what it was intended to do. If it did, it was considered to function

correctly.

(c) Parameterization

Varying the inputs to the model should make certain things occur. For

instance, by increasing the range of a weapon system, the number of rejected missions

should decrease. This type of verification was done for virtually all of the parameters. It

is worth noting that in some cases what is expected and what actually occurs are not the

same. This did not necessarily indicate that the simulation was not running correctly or

capturing the effects of those parameters correctly. Instances where parameterized input

53

did not yield outputs that made sense were investigated and corrected if needed. If it was

determined that the particular instance actually was modeled correctly, the author

generally found that the suspect output was the result of another parameter or modeling

decision. For instance, as stated above increased range should result in less missions

being rejected. If it did not, it might not mean the model is faulty. In one particular

instance this modification resulted in a specific shooter running out of ammunition very

early and not being able to cover his area of the battle-space. This resulted in an increase

in the number of missions rejected, which does make sense. These anomalies provided

insight that was unknown to the author earlier.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

III. ANALYSIS OF SIMULATION OUTPUT

A. OVERVIEW

Before analyzing the output, a review of the problem is in order. For the purposes

of this paper, NSFS is artillery provided by naval platforms. Available data on naval and

Army artillery indicate the strengths of naval platforms with respect to Army platforms

are in extended range and rapid rates of fire. Inherent weaknesses are in the areas of

probable error in range and deflection, time for coordination of fires, and time of flight

due to stationing of naval platforms at least 40 kilometers from shore. Based on this

information, the objective of this thesis is to determine the effectiveness of NSFS to the

Army at brigade level and below in a littoral campaign. Stated another way, do the

strengths of naval platforms outweigh the inherent weaknesses of those platforms for the

purposes of providing fire support for Army units at brigade level?

The focus of the analysis of the data was to determine the effectiveness of NSFS

to the Army brigade commander. Multi-attribute utility theory (MAUT) was used to

determine the utility of a particular COA within each scenario. Using the MAUT

procedure, the output from the simulation can determine the utility of each COA relative

to the other COA’s in that particular scenario. Effectiveness of NSFS can be measured

by comparing COA’s with and without NSFS.

By replicating each course of action, the simulation can produce confidence

intervals on the utility of each COA. These data are useful because they give the user an

idea of the robustness of a specific COA and allow the analyst to determine whether there

is a significant difference in the utility between competing COA’s. Fifty replications

were made for each COA in order to get a range of output values. This range of output

56

values was needed to compare the COA’s using the analysis of variance techniques

discussed later.

B. DESIGN OF THE EXPERIMENT

This experiment was designed to measure the effectiveness of NSFS using a

common sense approach. The objective was to create and execute a design that was

simple and could be easily understood by the end user, a military officer unschooled in

operations research techniques. Because of this restriction, the design consisted of a

relatively simple simulation program written in Java that provided easily interpreted

output. The intent of the model was not to simulate every aspect of the indirect fire fight,

but to simulate the more important aspects that are needed to determine the effectiveness

of NSFS. The MOE’s from the previous chapter determined the output needed for the

simulation and the level of complexity with which to simulate the indirect fire battle.

1. Experiment

The experiment consisted of four different COA’s or levels for each scenario,

each with seven MOE’s. Each of these COA’s was replicated 50 times, for a total of 400

simulation runs producing a total of 2800 individual pieces of data. The data were

collated and processed using the MAUT methodology weighting each MOE equally.

This produced 50 sets of finalized output in the form of utility for each COA, or 200

separate bits of numerical output each of which was linked to a specific COA for each

scenario. This data served as the baseline case to measure the utility of each COA. The

experiment is depicted below in Table 3.1.

57

Replications
COA IBCT FCS

Army Only 50 50
Navy Only 50 50

Army w/ Reinforcing Army 50 50
Army w/ Reinforcing Navy 50 50

TOTAL 200 200
Table 3.1: Experimental Design

2. Data Analysis

Once the experiments were complete, a cursory look at the data was done for two

reasons – to see if the output made sense (verification) and to see if any broad insight

could be gained from it.

(a) Verification

The mean values for each of the MOE’s for each COA in each Scenario

are shown below in Table 3.2.

FMT NAS PF TPS PS CD CA COA
IBCT

11.1487 1.3174 0.7528 0.7071 0.9412 0.0000 0.8462 A
75.6035 0.4644 0.9956 0.3156 0.3170 3.2400 1.0000 B
7.3585 4.3069 0.7535 0.7098 0.9427 0.0000 0.8534 C
10.3692 3.5583 0.9976 0.7473 0.7491 1.7800 1.0000 D

FCS
3.28651 2.12820 0.78983 0.54991 0.69632 0.0000 0.7414 A
10.1904 1.22583 0.9976 0.19579 0.19626 3.6400 1.0000 B
2.95028 5.11194 0.8024 0.54684 0.68154 0.0000 0.7478 C
3.62385 4.77277 0.97967 0.58253 0.59463 1.0200 1.0000 D

Table 3.2: Mean MOE Performance

COA A consists of three batteries of Army artillery, COA B consists of three ships, COA

C consists of six batteries, and COA D consists of three batteries and three ships. As

expected, the average fire mission times (FMT) declined and the number of available

shooters (NAS) increased as more assets were added to the base case. Due to the

extended range of Naval gunfire, it was expected that the area of the battlefield covered

58

(CA) and the percentage of missions fired (PF) for COA’s with ships would be higher,

and they are. Additionally, due to a combination of the lower accuracy of Naval guns

and the extended ranges that Naval missions incurred, the number of mission causing

collateral damage (CD) should have been higher for COA’s with ships as well, and it

was. Predictions for the success rate for missions fired (PS) and the total success rate for

all arriving targets (TPS) are difficult to predict, but the expectation is that adding Naval

gunfire to the equation would increase TPS due to the ability to fire targets, but PS would

decrease due to the inaccuracy of the added firepower. Overall the data seems to indicate

that the simulation was functioning correctly and yielding data that made sense.

(b) Insight

(1) Average Fire Mission Times. Due to the extended

range of the missions fired by Naval gunfire, the fire mission times were severely

degraded for COA’s with NSFS. By adjusting the parameters for which asset to chose

for firing missions, however, this can be mitigated. The objective is to improve the

overall effectiveness of indirect fires. By adjusting the weighting of the variables that

decide who fires what mission – range, PER, number of available rounds, and whether

the asset is field artillery or NSFS, the simulation can use NSFS for those missions that it

is most effective at engaging.

(2) Collateral Damage. COA’s that included NSFS had

a significantly higher incidence of collateral damage. Although not too surprising, it is

important to keep in mind due to the sensitive nature of the the missions the US has been

engaged in lately. To mitigate this, it is necessary to ensure that NSFS is used for

missions that have low probability of such occurrences. This is possible on a tactical

59

level, but may be impractical when planning large-scale operations that synchronized all

available indirect fires.

(3) Coverage Area. The coverage areas of COA’s with

NSFS was significantly higher than those without. The significance of this event is that it

shows that NSFS can cover areas that traditional Army artillery cannot. In the scenarios

created for this thesis, those areas are the rear and deep areas of the operation. Since

Army artillery is traditionally pushed forward to support engaged units, units are not

positioned to support rear echelon missions. Those missions are generally fired as targets

of opportunity when they are in range. NSFS can cover that dead space, contributing to

the overall success of the mission. Due to the limited range of Army artillery, it can

generally not engage the enemy deep in the battlefield. NSFS can be used to engage

targets before they enter Army artillery range to help shape the future battle for enaged

units. These shaping missions can disrupt the enemy’s assault, canalize him into

prepared kill zones, and attrite him before he enters the close fight.

3. Analysis of Variance (ANOVA)

At first glance it would appear that a two-factor ANOVA test should be used to

analyze the effects of COA and Scenario on the output. A closer look at the experiment

however, shows that there are significant differences between like COA’s in different

scenarios. The locations of the assets, the size of the area of operations, and the

specifications of the assets all differ immensely between scenarios. For these reasons, the

author opted to perform two separate one-factor ANOVA tests to test the null hypothesis

(Ho) that the treatment (COA) means were identical, or that total utility is not affected by

COA selection (Devore, 390-391). For both scenarios, the null hypothesis is rejected,

60

indicating that there was a statistically significant difference between at least one of the

treatments and the remainder of the treatments in each scenario.

To determine which, if any, of the COA’s were different from one another,

multiple comparisons was used. The question that remained to be answered was to

decide for each i and j whether µi = µj. Tukey’s procedure, the T Method, was used to

produce a collection of simultaneous confidence intervals about the true value of all

differences µi and µj. If the confidence interval for a specific difference contained the

value zero, then those two samples were deemed equal at level α of the experiment. For

this experiment, α was set at 0.05 (Devore, 401-402).

This analysis was performed using SPLUS and indicated that the differences

between all treatments were significant. For both scenarios the COA’s containing Army

field artillery with reinforcing Naval gunfire were superior. The output for the T Method

is shown below in Tables 3.3 and 3.4.

 Estimate Std.Error Lower Bound Upper Bound Includes Zero
1A-1B 0.846 0.0393 0.744 0.948 NO
1A-1C -0.799 0.0393 -0.901 -0.697 NO
1A-1D -1.970 0.0393 -2.070 -1.860 NO
1B-1C -1.640 0.0393 -1.750 -1.540 NO
1B-1D -2.810 0.0393 -2.910 -2.710 NO
1C-1D -1.170 0.0393 -1.270 -1.060 NO

Table 3.3: IBCT COA Comparison using T Method

 Estimate Std.Error Lower Bound Upper Bound Includes Zero

2A-2B 1.090 0.042 0.983 1.200 NO
2A-2C -0.782 0.042 -0.891 -0.673 NO
2A-2D -2.080 0.042 -2.190 -1.970 NO
2B-2C -1.870 0.042 -1.980 -1.770 NO
2B-2D -3.170 0.042 -3.280 -3.060 NO
2C-2D -1.300 0.042 -1.410 -1.190 NO

Table 3.4: FCS COA Comparison using T Method

61

The boxplots of the utility for the different COA’s are shown below in Figures 3.1

and 3.2. They show the performance of each COA by depicting the median as a stripe.

The box contains both the upper and lower quartiles. The whiskers of the boxplot are

depicted by the brackets which contain the lower and upper bounds of the data defined as

1.5*(Inter-Quartile range). Outliers are shown as stripes outside of the bracketed data.

They are a useful graphical depiction of the performance of the different COA’s that give

the user an easy to interpret depiction of the data.

3
4

5
6

1A 1B 1C 1D

Boxplot of Utility of IBCT COAs with all Weights Equal

Figure 3.1: Boxplot of IBCT COA’s

62

3
4

5
6

2A 2B 2C 2D

Boxplot of Utility of FCS COAs with all Weights Equal

Figure 3.2: Boxplot of FCS COA’s

The final output (the T Method comparison tables and the boxplots) from the

experiment meets the requirements of simplicity. Most people understand the theory

behind confidence intervals and can comprehend the basic idea behind Tukey’s

comparisons of µi and µj. The boxplots, although somewhat simplistic, provide a simple,

graphical depiction of each COA’s median utility and range.

4. Sensitivity to Weights

For this particular experiment, all MOE’s were weighted equally. The actual

weighting of each MOE is best left to the professional judgement of the leaders and staffs

involved in the conflict. Equal weighting results in each MOE having about 14% of the

total weight. To demonstrate the sensitivity that the analysis has to the weighting of each

of the MOE’s, one MOE was given 50% of the total weight, resulting in each remaining

MOE having roughly 8.33% of the remaining weight. This procedure was replicated

63

seven times (once per MOE). The boxplots for each of those branches from the base case

is shown below in Figures 3.3 and 3.4.

3

4

5

6

1A 1B 1C 1D

Boxplot of Utility of IBCT COAs with all Weights Equal

20

40

60

80

1A 1B 1C 1D

Boxplot of IBCT COAs - Fire Mission Time = 50%

20

40

60

80

1A 1B 1C 1D

Boxplot of IBCT COAs - Number of Available Shooters = 50%

4
0

5
0

6
0

7
0

8
0

9
0

1A 1B 1C 1D

Boxplot of Utility of IBCT COAs - Percent Fired = 50%

40

60

80

1A 1B 1C 1D

Boxplot of IBCT COAs - Percent of all Tgts Successfully Eng = 50%

30

40

50

60

70

80

1A 1B 1C 1 D

Boxplot of IBCT COAs –
Percent of Fired Tgts Successfully Eng = 50%

20

40

60

80

1A 1B 1C 1D

Boxplot of IBCT COAs - Collateral Damage=

40
50

60
70

80
90

1A 1B 1C 1D

Boxplot of IBCT COAs - Percentage of AO Covered = 50%

Figure 3.3: Boxplots of Different Weightings for IBCT

64

3
4

5
6

2A 2B 2C 2D

Boxplot of Utility of FCS COAs with all Weights Equal

2
0

4
0

6
0

8
0

2A 2B 2C 2D

Boxplot of FCS COAs - Fire Mission Time = 50%

2
0

4
0

6
0

8
0

2A 2B 2C 2D

Boxplot of FCS COAs -Number of Available Shooters = 50%

4
0

5
0

6
0

7
0

8
0

9
0

2 A 2 B 2C 2D

Boxplot of FCS COAs - Percent Fired = 50%

2
0

4
0

6
0

8
0

2 A 2 B 2C 2D

Boxplot of FCS COAs - Percent of Tgts Successfully Eng = 50%

20

40

60

80

2A 2B 2C 2 D

Boxplot of FCS COAs - Percent of Tgts Fired Successfully Eng = 50%

20
40

60
80

2A 2B 2C 2D

Boxplot of FCS COAs - Collateral Damage = 50%

30
40

50
60

70
80

90

2A 2B 2C 2D

Boxplot of FCS COAs - Percentage of Area Covered = 50%

Figure 3.4: Boxplots of Different Weightings for FCS

65

These boxplots show how the utility for the COA’s in the IBCT and FCS

scenarios are affected by changes in the weights of the various MOE’s. This output is

helpful because it gives the user an idea of the sensitivity that the output has to the utility.

In addition to the medians of the utility shifting up and down, changing the weights

affects the spread too.

Looking at a specific boxplot – IBCT with Collateral Damage weighted at 50%

we notice that the COA 1C and 1D (organic Army fires with reinforcing Army and Navy

fires) both appear to have similar means. In fact, the T Method confirms that there is no

statistical difference in the means for those two treatments as shown below in Table 3.5.

In this specific COA using the weights listed above, the commander has more to consider

than he might if the utility of the COA’s were significantly different, as in the base case.

Although both COA’s are similar, the variances of the overall utility of each COA are

much different and could be an important factor in his decision.

 Estimate Std.Error Lower Bound Upper Bound Includes Zero
1C-1D 0.881 1.64 -3.36 5.12 YES
Table 3.5: Comparison of IBCT COA 1C and 1D (Collateral Damage = 50%)

Changes in the weighting scheme for a single MOE result in linear changes to the

utility. However, the effects of higher order changes (changing the weights of two or

more MOE’s simultaneously) have not been fully explored. It is suspected that higher

order changes will result in monotonistic changes in the overall utility (e.g. if changing

the weight of MOE’s one and two individually shift the utility in favor of a particular

COA, then increasing the weight of both simultaneously should shift the utility in favor

of the same COA). Shown below is a boxplot of the effect of changing the weights of

collateral damage and fire mission times, both of which favor COA 1D, to 80% of the

total utility (40% each) for the IBCT scenario. The remaining MOE’s are now worth a

66

mere 4% of the total utility. The boxplot of the results shown below in Figure 3.5 now

seems to indicate that COA 1D is the preferred COA. The T Method results shown

below in Table 3.6 indicate that there is no significant difference between COA’s 1A and

1D using this weighting scheme. However, the COA with the most utility is COA 1C,

which is evident by the fact that the confidence interval for 1A – 1C is negative, and 1C –

1D is positive.

20

40

60

80

1A 1B 1C 1D

Boxplot of IBCT –
Fire Mission Time = 40%, Collateral Damage = 40%

Figure 3.5: Boxplot of IBCT Utility

 Estimate Std.Error Lower Bound Upper Bound Includes Zero
1A-1B 37.70 1.42 33.90 41.400 NO
1A-1C -4.23 1.42 -8.02 -0.448 NO
1A-1D 1.08 1.42 -2.70 4.860 YES
1B-1C -41.90 1.42 -45.70 -38.100 NO
1B-1D -36.60 1.42 -40.40 -32.800 NO
1C-1D 5.31 1.42 1.53 9.100 NO

Table 3.6: Comparison of IBCT COA’s (Fire Mission Time = 40%, Collateral Damage = 40%)

67

This analysis does not produce specific answers as to what the effectiveness of

NSFS is. Rather it shows that the answer is a function of the inputs to the COA’s and

scenarios and the weights attributed to each MOE. If the commander weighted all

MOE’s equally and relied entirely on the output from this experiment, the logical choice

for both the IBCT and FCS scenarios would be to use the organic Army Artillery

Battalion in direct support reinforced by Naval gunfire. Different scenarios will certainly

result in different results.

C. LIMITATIONS OF THE ANALYSIS

1. Input and Output

This analysis is built upon a number of significant assumptions, the first of which

is that the simulation accurately models and measures the MOE’s. Additionally, as with

any simulation or analysis, the input variables dictate the output. Several assumptions

and “best guesses” were made to get reasonable input variables. Some of the input

variables, such as number of rounds required to destroy, neutralize, or suppress enemy

armor are classified information. Others, such as probable errors in range and deflection

for weapon systems were estimated for several reasons. First, since they vary with range

and propellant type and amount used, they are average measures. And secondly, since

the actual tables with the actual data are not available to the general public, best guess

data was used.

2. Decision Aid

The FSST and the analysis presented here are meant as a decision aid. They are

not intended to replace decision-makers or leaders. Those individuals are charged with

the ultimate responsibility for what occurs as a result of their decisions. Their experience

68

coupled with the analysis presented here will help guide them to make the best decision

with respect to the circumstances.

Due to the nature of this model, it does not measure the intangible aspects

associated with the effectiveness of NSFS. Although we purport to measure reliability,

flexibility, and lethality, those measurements are a function of the definitions presented in

this thesis and cannot replace reality. They simply provide insight into what

measurements of those topics might actually be.

69

IV. CONCLUSIONS
A. RESULTS

The results of this thesis indicate that NSFS can be effective in providing support

for Army units at brigade level in a littoral campaign for the IBCT and the FCS scenarios.

The measures of effectiveness used for this analysis were fire mission times, available

firing platforms, percentage of missions fired, percentage of successful missions based on

all arriving targets, percentage of successful missions based on missions fired, number of

rounds that caused collateral damage, and the percentage of the area of operations

covered. COA’s were developed consisting of different artillery task organizations of

Army and Navy artillery for each scenario. Using the Fire Support Simulation Tool

developed for this thesis, each COA was simulated 50 times to get values for the MOE’s.

Using multi-attribute utility theory each MOE for each COA replication within a

particular scenario was given a utility rating based on the actual value of that MOE/COA

combination compared with other MOE/COA combinations in the scenario. The final

utility for a specific COA replication in a scenario was determined by weighting and then

combining the utility of the MOE’s for each COA replication in a particular scenario.

Single factor ANOVA and Tukey’s procedure for multiple comparisons were used to

determine whether there was a statistically significant difference among the COA’s.

When using equal weights for all of the MOE’s, the best COA for both scenarios

was the COA that consisted of a mixture of Army and Navy artillery. Based entirely on

the weapon systems specifications used, this result indicates that there could be a scenario

for the IBCT and FCS where NSFS adds more utility and is effective as a fire support

weapon in a littoral campaign.

70

B. ISSUES

This analysis revealed that there is merit to the use of NSFS in place of Army

artillery for reinforcing fires in the littorals. However, nothing can truly replace the

feeling of ownership that a unit commander feels by having supporting elements on the

ground with him and within arm’s reach. Most if not all leaders feel very comfortable

with the capabilities and limitations of those assets they are most familiar with. Joint

training exercises between Naval and Army units are extremely rare. Lack of that joint

training and personal prejudices build distrust, which may prove an insurmountable

obstacle if not corrected.

Nothing speaks more highly of dedication to success of a mission than having a

personal stake in the outcome of the mission. Most soldiers stake their lives on the

successful completion of their missions. If assets providing support in the form of naval

gunfire do not have that same stake, Army commanders feel uncomfortable.

The results of this analysis assume the relatively efficient use of available assets

to accomplish all fire missions. If assets such as naval gunfire can be called away at a

moment’s notice, their reliability to the commander on the ground becomes suspect. This

leads to inefficient use of the asset. Basically, the Army commander will try to get as

much as he can out of that asset before it gets taken away. This type of misuse will

almost certainly create prejudice and mistrust among the Navy towards the Army.

These issues must be addressed before naval gunfire can be integrated seamlessly

into Army operations now or in the future. Digital synchronization, future technologies,

and memorandums of agreement will help, but alone they will not suffice. Soldiers know

71

that the soldier across the street will be ready because they see him and her working and

training every day. These issues of mistrust must be worked out on the ground,

commander to commander, sergeant to petty officer, and soldier to sailor.

C. RECOMMENDATIONS FOR FURTHER RESEARCH

Research on the effectiveness of NSFS to Army commanders has provided one

perspective and one answer to an extremely complex and ever-changing problem. As

with much significant research, more questions than answers resulted, which is the basis

for the following recommendations for further study of this problem.

1. Further Development of the FSST

For the purposes of this thesis the FSST was adequate. Further development

could provide users with a higher fidelity and a more versatile tool. The current version

of the FSST does not have a graphical user interface (GUI) and is limited in the

distributions that can be used to determine the locations of arriving enemy targets. It also

does not account for different times of flight for different weapon systems and different

ranges, and accounts for only one type of ammunition. These are just a few areas that

could use improvement, and will be discussed in further detail below

(a) Graphical User Interface and Target Distribution Model

(1) GUI. A GUI could be developed to simplify the

development of scenarios. The GUI could prompt the user for all needed information and

could have built in error checking mechanisms to prevent the user from entering bad data.

This type of enhancement would make the Java underpinnings of the simulation

transparent to the user and would make the tool more likely to be used for

experimentation and analysis.

72

(2) Develop Unique Distributions to Be Used With the GUI

- Bivariate Triangular. The current version of the FSST uses two parameter

distributions for the breadth of the battlefield and one parameter distributions for the

depth of the battlefield. This is due to the fact that the FSST was designed for a fairly

specific purpose. One of the strengths of Java is that it is allows for easily extending the

capabilities and flexibility of any program. Making the FSST generic enough to accept a

broader set of possible distributions for the depth and breadth of the battlefield would be

relatively simple and would give the user a much more powerful tool. To allow for the

analysis of future scenarios that might include a strongpoint-type position deep in enemy

territory, the development of distributions that make the probability of encountering

enemy targets at edges of the FLOT higher than in the center would be appropriate (see

Figure 4.1).

Figure 4.1: Unique Dual Triangular Distribution

Using this distribution bivariately would create a distribution that could model a

strongpoint-type defense. The objective is to create a distribution that looks like an

inverted, four-sided pyramid (Figure 4.2). The bivariate version of the dual triangular

distribution would probably look more like a tarp suspended by all four corners and

pulled taut in the center that sags somewhat in the center of each side.

73

Figure 4.2: Inverted Pyramid

Shown below in Figure 4.3 is what an example of this type of bivariate

distribution might look like, where the probability of encountering the enemy is highest

on the perimeter and lowest at the center. Here we depict an Army unit in a desert-type

environment near the coast surrounded by enemy units. The unit has organic fire support,

but cannot effectively cover his perimeter with them. NSFS can provide the extra fire

support needed to cover the entire area of operations.

74

Arriving targets distributed according
to dual triangular distribution.

Arriving
targets
distributed
according
to dual
triangular
distribution
.

Direction
of Enemy
Advance

Direction
of Enemy
Advance

Direction
of Enemy
Advance

Direction
of Enemy
Advance

Direction
of Enemy
Advance

Figure 4.3: Picture of Density of Targets on the Battlefield. Dark indicates higher density

This distribution does not have to be symmetrical. It is conceivable that a unit

could be surrounded by enemy units with different characteristics on each side. In this

case, these enemy forces might attack the surrounded unit at different rates on each side.

By adjusting the parameters of the bivariate dual triangular distribution, the user could

model aggressive units to the left and front attacking in conjunction with less aggressive

units to the right and rear. An example of what this might look like is shown below in

Figure 4.4.

75

Area of Operations

x

y

Area of Operations

x

y
Figure 4.4: Un-symmetrical Bivariate Dual Triangular Distribution

By incorporating unique distributions such as this and others, we can more

realistically model a broader array of scenarios. These distributions should be tied into

the GUI described earlier to give the user a simple method of picking distributions and

their parameters.

- Polar Coordinates. Another option for developing a model that depicts a

strongpoint defense would be to model the arrival of targets using polar coordinates. In

this case the two variables of angle and radius could generate a bivariate distribution that

looks like a bowl or a ripple in a pond (see Figure 4.5, radially fleeing target). The

randomly chosen polar coordionates that follow the particular bivariate distribution could

then be converted to Cartesian coordinates for the simulation. An example of a very

simple distribution would be one in which the angle was uniform between 0 and 6.28

radians, and the radius or range were chosen based on a right triangular distribution. This

distribution would look like an inverted cone.

76

Figure 4.5: Sample polar coordinate bivariate distributions (From: Eagle).

(b) Survivability

The current version of the FSST discounts the effects of survivability, as

fire support systems are not attrited in the model. By accurately accounting for attrition

from counter-battery fire, mines, enemy actions, and mechanical failure, the FSST could

be an improved model of the battlefield. This enhancement would enable the user to

measure, compare, and analyze the effects of more survivable systems using a relatively

simple tool. A possible thesis topic would be an analysis of the effectiveness of different

howitzer systems for the IBCT and FCS-OF.

(c) Expand the Types of Ammunition the Simulation Models

Expanding the family of munitions that the simulation accounts for would

make the FSST much more complex than it already is, and could make scenario

development more time consuming (if the user wanted to use more than one type of

ammunition). The benefits of this would be that it would allow comparisons between

different basic loads of munitions to optimize success on the battlefield. This would also

allow for more realistic comparisons among artillery systems by accounting for the

availability of different munitions for different systems. Overall, this improvement

would make the simulation more flexible and realistic.

77

(d) Modify Modeling of Time of Flight

Time of flight is calculated based on the average velocity of projectiles

regardless of range or delivery system. To make the simulation more accurate, another

method of calculating time of flight should be devised. One possible solution would be

to take tabularized firing tables for Army and Navy artillery to get the times of flight and

plot those times based on range for different weapon systems and use regression to

develop a simple formula to compute times of flight for individual platforms.

2. Fire Support Optimization Based on Threat

Mission, enemy, time, terrain, and training make all military campaigns unique.

Based on these factors, the force structure for a military campaign is determined by

leaders who generally use intelligence estimates and personal experience as their guide.

Using the FSST, a student could design an experiment to determine the optimal mix of

Naval and Army artillery for a particular campaign. This analysis would provide the

decision-maker a quantitative basis to aid in the decision-making process.

This problem can be examined using several different techniques. One technique

would be to design a multi- factorial experiment and use FSST to determine the optimal

strategy by using regression or ANOVA techniques to map response surfaces. Another

technique would be to use linear and non- linear optimization techniques to determine the

optimal solution. Certainly other techniques exist, yet these are two simple well-

developed procedures that are available.

3. Cost Analysis of Army Fire Support Systems

Effectiveness of NSFS in this analysis is based entirely on utility to the Army

brigade commander. The brigade commander is not concerned with cost because it does

78

not affect him or his operation directly – generally, if the assets are available, they will be

made available to him. However, when developing the Nation’s future force, cost is an

enormous factor and cannot be discounted.

An excursion from this thesis would be to optimize future fire support systems

based on cost. By using a set of approved Army scenarios for the future, the student

could design an experiment to determine the utility of different combinations of fire

support systems throughout the Army and then optimize that force with respect to utility

and cost. Put in more simplistic terms, this analysis would be a bang for the buck

analysis of Army fire support.

Another possible excursion would be to analyze and optimize utility and cost for a

specific scenario that took into account cost. For example, the fire support for a purely

littoral Army operation could be optimized for utility given a limited budget. By

experimenting with different feasible combinations of NSFS and Army artillery, the

student could optimize the assets provided for that operation for a specific budget.

D. SUMMARY AND CONCLUSIONS

The effectiveness of Naval Surface Fire Support is difficult to define and even

harder to measure. By using value systems design to define effectiveness of NSFS in a

hierarchical manner using an objective tree, NSFS effectiveness can be defined

quantitatively by the lowest sub-objectives on the objective tree. Those lowest level,

quantitative sub-objectives are the MOE’s that were used to measure the effectiveness of

NSFS. Figure 4.6 shows the condensed objective tree that depicts the main objective, the

first level objectives, and the lowest level objectives or MOE’s (notice that all other

intermediate level objectives have been removed).

79

Minimize the Number
of Rounds that Cause

Collateral Damage

Maximize the Percentage
of the Area of Operations

with Indirect Fire Coverage

Maximize
Flexibility

Maximize Percentage
of Missions Fired

Maximize Percentage
of Successful Targets Engaged

Minimize Average
Mission Time

Maximize
Reliability

Maximize Average Number
of Available Firing Platforms

Maximize Percentage of
Successful Missions

Maximize
Lethality

To maximize the effectiveness of lethal indirect fires
available to Army Objective Force commanders

at Brigade level and below in locations within
 reach of Navy ship fires.

Figure 4.6: Condensed Objective Tree

By combining the strengths of Army artillery and naval gunfire, an Army Brigade

commander can organize a fire support team that is better able to support his missions.

The task organization of assets used is strongly dependent on the weighting scheme the

commander adopts for the MOE’s presented earlier. Although there is evidence

supporting the use of NSFS in a support of Army operations in the littorals, there are a

myriad of issues such as training, mistrust, and synchronization that must be addressed to

make these types of joint campaigns successful. In the final analysis, it was determine

that there is strong quantitative and analytical evidence to support the effectiveness of

NSFS to an Army Brigade commander engaged in a littoral campaign.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX 1: IBCT RAW DATA

FMT NAS PF TPS PS CD CA COA
10.1155 1.3809 0.7412 0.6991 0.9455 0 0.8462 1A
10.0987 1.3208 0.7529 0.7224 0.9594 0 0.8462 1A
13.5736 1.2861 0.7576 0.6981 0.9221 0 0.8462 1A
10.6466 1.2771 0.8047 0.7671 0.9532 0 0.8462 1A
8.7089 1.3835 0.7553 0.7059 0.9346 0 0.8462 1A
9.2294 1.3523 0.7553 0.7088 0.9429 0 0.8462 1A
8.8930 1.5523 0.7247 0.6746 0.9369 0 0.8462 1A
13.1867 1.2501 0.7647 0.7268 0.9533 0 0.8462 1A
10.1874 1.4308 0.7365 0.6888 0.9385 0 0.8462 1A
10.8690 1.2736 0.7576 0.7275 0.9624 0 0.8462 1A
8.7823 1.4471 0.7388 0.7028 0.9521 0 0.8462 1A
12.8423 1.2563 0.7882 0.7177 0.9146 0 0.8462 1A
11.2220 1.3108 0.7459 0.7014 0.9427 0 0.8462 1A
10.1027 1.2453 0.7529 0.7092 0.9434 0 0.8462 1A
12.7777 1.2948 0.7647 0.7187 0.9412 0 0.8462 1A
13.5144 1.2354 0.7529 0.7082 0.9406 0 0.8462 1A
10.8664 1.3880 0.7788 0.7352 0.9453 0 0.8462 1A
10.2689 1.4459 0.7459 0.6894 0.9243 0 0.8462 1A
10.3266 1.4044 0.7341 0.6934 0.9453 0 0.8462 1A
9.7868 1.4779 0.7412 0.6862 0.9243 0 0.8462 1A
11.0182 1.2850 0.7435 0.7038 0.9489 0 0.8462 1A
13.4077 1.2219 0.7694 0.7262 0.9472 0 0.8462 1A
12.7512 1.1467 0.7929 0.7458 0.9453 0 0.8462 1A
9.8451 1.3921 0.7553 0.7254 0.9596 0 0.8462 1A
9.5355 1.4259 0.7553 0.7092 0.9404 0 0.8462 1A
12.0433 1.2273 0.7459 0.7075 0.9494 0 0.8462 1A
11.7216 1.3401 0.7294 0.6802 0.9375 0 0.8462 1A
13.1663 1.1875 0.7412 0.6995 0.9430 0 0.8462 1A
14.5717 1.2217 0.7459 0.6879 0.9238 0 0.8462 1A
10.1880 1.3251 0.7576 0.7019 0.9329 0 0.8462 1A
12.1267 1.2426 0.7318 0.6816 0.9323 0 0.8462 1A
16.2287 1.2080 0.7882 0.7447 0.9459 0 0.8462 1A
11.9053 1.2470 0.7506 0.6865 0.9175 0 0.8462 1A
10.4061 1.2501 0.7600 0.7279 0.9621 0 0.8462 1A
9.0901 1.2966 0.7388 0.6730 0.9132 0 0.8462 1A
10.6971 1.3245 0.7600 0.7170 0.9441 0 0.8462 1A
10.0657 1.3807 0.7482 0.6896 0.9238 0 0.8462 1A
11.6537 1.3789 0.7294 0.6958 0.9547 0 0.8462 1A
10.1224 1.2886 0.7529 0.7234 0.9623 0 0.8462 1A
11.2466 1.3654 0.7459 0.7129 0.9558 0 0.8462 1A
10.2101 1.2596 0.7576 0.7139 0.9438 0 0.8462 1A
10.4852 1.4571 0.7459 0.7014 0.9427 0 0.8462 1A
12.0845 1.3369 0.7176 0.6872 0.9603 0 0.8462 1A
13.6397 1.2590 0.7576 0.6998 0.9250 0 0.8462 1A
12.2961 1.2967 0.7482 0.6809 0.9114 0 0.8462 1A

82

FMT NAS PF TPS PS CD CA COA
10.1355 1.3100 0.7365 0.6919 0.9419 0 0.8462 1A
9.9158 1.2275 0.7812 0.7494 0.9632 0 0.8462 1A
10.5636 1.3350 0.7553 0.6833 0.9082 0 0.8462 1A
11.2183 1.2345 0.7529 0.7176 0.9531 0 0.8462 1A
9.0979 1.3846 0.7506 0.7085 0.9462 0 0.8462 1A
52.9676 0.4146 0.9976 0.2864 0.2872 2 1 1B
80.2095 0.4394 0.9976 0.3554 0.3564 1 1 1B
78.4474 0.4263 0.9976 0.3102 0.311 4 1 1B
62.8528 0.5221 0.9976 0.3264 0.3273 5 1 1B
56.4942 0.4155 0.9976 0.3609 0.3618 4 1 1B
59.5435 0.4792 0.9976 0.3316 0.3324 3 1 1B
45.6509 0.5203 0.9388 0.2576 0.2743 2 1 1B

138.2842 0.4668 0.9976 0.3047 0.3056 4 1 1B
56.1804 0.4494 0.9976 0.3275 0.3283 2 1 1B
60.6415 0.4793 0.9976 0.297 0.2978 1 1 1B
57.9176 0.5018 0.9976 0.3248 0.3256 7 1 1B
87.6755 0.4578 0.9976 0.3046 0.3054 5 1 1B
80.3952 0.3371 0.9976 0.3386 0.3395 5 1 1B
83.4727 0.4538 0.9976 0.3736 0.3746 2 1 1B
58.8176 0.4889 0.9976 0.3342 0.3351 3 1 1B
87.2914 0.5395 0.9976 0.3295 0.3305 3 1 1B
58.3692 0.5467 0.9976 0.313 0.3138 1 1 1B
61.9579 0.6099 0.9976 0.3272 0.3281 2 1 1B
63.1433 0.5359 0.9976 0.3298 0.3307 1 1 1B
71.5462 0.5729 0.9976 0.3036 0.3043 1 1 1B
79.1065 0.4308 0.9976 0.3397 0.3407 3 1 1B
84.808 0.4637 0.9976 0.3111 0.312 0 1 1B
96.7954 0.4777 0.9976 0.32 0.3209 4 1 1B
71.5192 0.5009 0.9765 0.2974 0.3053 1 1 1B
85.5592 0.5556 0.9976 0.3246 0.3255 5 1 1B
82.6135 0.5347 0.9976 0.2693 0.2701 2 1 1B
71.8495 0.3883 0.9976 0.3054 0.3062 5 1 1B

110.0748 0.4061 0.9976 0.3246 0.3256 7 1 1B
84.9032 0.3738 0.9976 0.2964 0.2972 3 1 1B
62.1142 0.4921 0.9976 0.2834 0.2842 3 1 1B
87.7569 0.3322 0.9976 0.2912 0.292 4 1 1B
88.1566 0.3902 0.9976 0.3105 0.3113 2 1 1B

116.2587 0.5537 0.9976 0.3256 0.3265 2 1 1B
62.5021 0.4406 0.9976 0.2784 0.2791 5 1 1B
66.3734 0.355 0.9976 0.2984 0.2992 5 1 1B
80.6586 0.4661 0.9976 0.3411 0.342 0 1 1B
52.9527 0.3854 0.9788 0.33 0.3376 7 1 1B
85.2501 0.5998 0.9976 0.3667 0.3677 3 1 1B
76.4893 0.4631 0.9976 0.2693 0.2701 3 1 1B
71.104 0.3795 0.9976 0.2982 0.299 5 1 1B
90.275 0.4469 0.9976 0.3052 0.306 1 1 1B
58.6385 0.5545 0.9976 0.3436 0.3445 4 1 1B

83

FMT NAS PF TPS PS CD CA COA
89.5289 0.3683 0.9976 0.3467 0.3476 2 1 1B
74.586 0.4158 0.9976 0.3244 0.3253 3 1 1B
86.7711 0.4184 0.9976 0.3484 0.3493 5 1 1B
80.6077 0.429 0.9976 0.2479 0.2486 2 1 1B
72.9093 0.5738 0.9976 0.3103 0.3112 4 1 1B
69.0219 0.5004 0.9976 0.2857 0.2865 6 1 1B
82.2343 0.4187 0.9976 0.3433 0.3443 6 1 1B
56.8961 0.4465 0.9976 0.3051 0.3059 2 1 1B
6.9691 4.3593 0.7412 0.6981 0.9427 0 0.8534 1C
7.492 4.3269 0.7529 0.7106 0.9438 0 0.8534 1C

8.3287 4.2787 0.7576 0.7335 0.9688 0 0.8534 1C
7.73 4.2723 0.8047 0.76 0.9444 0 0.8534 1C

7.6254 4.3809 0.7553 0.7241 0.9594 0 0.8534 1C
7.0711 4.3317 0.7553 0.7028 0.9312 0 0.8534 1C
7.0417 4.5191 0.7247 0.6824 0.9416 0 0.8534 1C
7.5678 4.2315 0.7694 0.7417 0.966 0 0.8534 1C
6.9281 4.4219 0.7365 0.7075 0.9615 0 0.8534 1C
7.1517 4.2804 0.7576 0.6974 0.9219 0 0.8534 1C
6.5345 4.4211 0.7435 0.6769 0.9111 0 0.8534 1C
7.6099 4.2192 0.7882 0.747 0.9489 0 0.8534 1C
7.3749 4.2793 0.7482 0.7224 0.9654 0 0.8534 1C
7.692 4.2146 0.7529 0.7059 0.9375 0 0.8534 1C

8.5518 4.3076 0.7647 0.7176 0.9385 0 0.8534 1C
7.9956 4.2436 0.7553 0.7153 0.947 0 0.8534 1C
7.7949 4.3674 0.7788 0.7365 0.9456 0 0.8534 1C
7.0248 4.4655 0.7459 0.7082 0.9495 0 0.8534 1C

6.72 4.3994 0.7341 0.7019 0.9553 0 0.8534 1C
7.5525 4.4536 0.7435 0.7166 0.9623 0 0.8534 1C
7.1184 4.2987 0.7435 0.7028 0.946 0 0.8534 1C
7.2369 4.212 0.7694 0.7264 0.9448 0 0.8534 1C
7.7485 4.1231 0.7929 0.7529 0.9496 0 0.8534 1C
7.0521 4.3496 0.7553 0.6901 0.913 0 0.8534 1C
6.8131 4.4426 0.7553 0.7123 0.9438 0 0.8534 1C
7.6545 4.2388 0.7459 0.695 0.9333 0 0.8534 1C
7.1541 4.2988 0.7294 0.6912 0.951 0 0.8534 1C
7.5723 4.138 0.7435 0.6768 0.9088 0 0.8534 1C
7.4578 4.2239 0.7482 0.7019 0.9373 0 0.8534 1C
8.022 4.28 0.7576 0.7275 0.9624 0 0.8534 1C

7.1484 4.2408 0.7318 0.6714 0.9167 0 0.8534 1C
8.0412 4.1846 0.7882 0.7358 0.9341 0 0.8534 1C
7.0445 4.2216 0.7529 0.7234 0.9623 0 0.8534 1C
7.665 4.2701 0.76 0.7153 0.9462 0 0.8534 1C

6.5345 4.2942 0.7412 0.6856 0.9265 0 0.8534 1C
6.9408 4.3248 0.76 0.7153 0.9412 0 0.8534 1C

7.61 4.3651 0.7482 0.7116 0.9525 0 0.8534 1C
7.3674 4.3905 0.7294 0.6792 0.932 0 0.8534 1C
6.9693 4.3318 0.7529 0.7075 0.9404 0 0.8534 1C

84

FMT NAS PF TPS PS CD CA COA
7.5255 4.3723 0.7459 0.6948 0.9308 0 0.8534 1C
7.0469 4.2602 0.7576 0.7139 0.9438 0 0.8534 1C
6.7356 4.4528 0.7459 0.7055 0.9489 0 0.8534 1C
7.1947 4.3431 0.7176 0.6738 0.9406 0 0.8534 1C
6.7268 4.2482 0.7576 0.7106 0.9379 0 0.8534 1C
7.3305 4.2973 0.7506 0.6792 0.9057 0 0.8534 1C
7.1667 4.2633 0.7365 0.6918 0.9393 0 0.8534 1C
7.6553 4.2047 0.7812 0.7459 0.9548 0 0.8534 1C
6.7821 4.3192 0.76 0.7167 0.9465 0 0.8534 1C
8.5899 4.227 0.7553 0.716 0.9472 0 0.8534 1C
7.2642 4.3526 0.7506 0.7153 0.953 0 0.8534 1C
9.1293 3.5816 0.9976 0.7316 0.7333 1 1.0000 1D
10.4000 3.5670 0.9976 0.7500 0.7518 2 1.0000 1D
11.5310 3.5317 0.9976 0.7624 0.7642 6 1.0000 1D
10.8170 3.7213 0.9976 0.8147 0.8167 2 1.0000 1D
9.1434 3.6614 0.9976 0.7464 0.7482 1 1.0000 1D
10.1038 3.5877 0.9976 0.7405 0.7422 3 1.0000 1D
9.1750 3.7997 0.9976 0.7698 0.7716 1 1.0000 1D
12.3588 3.5160 0.9976 0.7512 0.7530 4 1.0000 1D
10.2462 3.6566 0.9976 0.7357 0.7375 3 1.0000 1D
9.6743 3.5250 0.9976 0.7630 0.7648 5 1.0000 1D
9.1120 3.6871 0.9976 0.7512 0.7529 2 1.0000 1D
12.0336 3.6020 0.9976 0.7780 0.7799 0 1.0000 1D
10.1343 3.5026 0.9976 0.7303 0.7321 1 1.0000 1D
11.7435 3.4305 0.9976 0.7387 0.7405 2 1.0000 1D
9.6917 3.6180 0.9976 0.7712 0.7730 1 1.0000 1D
11.4213 3.4371 0.9976 0.7547 0.7565 1 1.0000 1D
9.4550 3.7445 0.9976 0.7565 0.7583 0 1.0000 1D
9.6525 3.7297 0.9976 0.7547 0.7565 1 1.0000 1D
9.6765 3.6017 0.9976 0.7406 0.7423 2 1.0000 1D
8.9047 3.7459 0.9976 0.7394 0.7412 1 1.0000 1D
11.9245 3.5010 0.9976 0.7245 0.7262 3 1.0000 1D
10.7633 3.4918 0.9976 0.7464 0.7482 2 1.0000 1D
14.1308 3.3938 0.9976 0.7701 0.7720 0 1.0000 1D
9.7204 3.6753 0.9976 0.7482 0.7500 1 1.0000 1D
10.1042 3.7521 0.9976 0.7730 0.7749 2 1.0000 1D
11.4027 3.4233 0.9976 0.7530 0.7548 2 1.0000 1D
10.7875 3.4566 0.9976 0.7488 0.7506 2 1.0000 1D
12.6567 3.2913 0.9976 0.7571 0.7589 0 1.0000 1D
10.2746 3.3909 0.9976 0.7069 0.7085 3 1.0000 1D
9.6899 3.5797 0.9976 0.7305 0.7322 2 1.0000 1D
10.7698 3.3789 0.9976 0.7208 0.7225 4 1.0000 1D
13.0605 3.5320 0.9976 0.7589 0.7607 2 1.0000 1D
9.9304 3.4435 0.9976 0.7464 0.7482 1 1.0000 1D
10.5579 3.4686 0.9976 0.7373 0.7391 0 1.0000 1D
9.2348 3.4756 0.9976 0.7310 0.7327 1 1.0000 1D
9.9000 3.5798 0.9976 0.7352 0.7370 3 1.0000 1D

85

FMT NAS PF TPS PS CD CA COA
9.4779 3.6320 0.9976 0.7423 0.7441 1 1.0000 1D
10.3573 3.5923 0.9976 0.7109 0.7126 0 1.0000 1D
9.7622 3.5653 0.9976 0.7441 0.7458 1 1.0000 1D
10.6510 3.5667 0.9976 0.7647 0.7665 4 1.0000 1D
10.4308 3.4840 0.9976 0.7452 0.7470 2 1.0000 1D
9.0162 3.7584 0.9976 0.7464 0.7482 3 1.0000 1D
11.6548 3.4457 0.9976 0.7314 0.7332 0 1.0000 1D
9.4646 3.5260 0.9976 0.7648 0.7667 2 1.0000 1D
9.2086 3.5424 0.9976 0.7167 0.7184 1 1.0000 1D
9.6773 3.4702 0.9976 0.7275 0.7292 1 1.0000 1D
10.2880 3.5374 0.9976 0.7705 0.7724 1 1.0000 1D
10.3546 3.5772 0.9976 0.7572 0.7590 1 1.0000 1D
9.7538 3.4982 0.9976 0.7441 0.7458 1 1.0000 1D
9.0496 3.6365 0.9976 0.7294 0.7311 4 1.0000 1D

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX 2: FCS RAW DATA

FMT NAS PF TPS PS CD CA COA
3.4232 2.1049 0.8188 0.5165 0.6311 0 0.7414 2A
3.0793 2.1559 0.7718 0.5506 0.7134 0 0.7414 2A
3.4291 2.1111 0.7929 0.5399 0.6805 0 0.7414 2A
3.3145 2.1582 0.8024 0.5446 0.6784 0 0.7414 2A
3.1468 2.1416 0.8118 0.5529 0.6812 0 0.7414 2A
3.3493 2.1215 0.8071 0.5788 0.7172 0 0.7414 2A
3.0635 2.246 0.7576 0.533 0.704 0 0.7414 2A
3.3287 2.0942 0.7976 0.5504 0.6891 0 0.7414 2A
3.0974 2.1819 0.7812 0.564 0.7234 0 0.7414 2A
3.196 2.1166 0.7859 0.5495 0.6997 0 0.7414 2A

3.2167 2.2019 0.7718 0.5269 0.6818 0 0.7414 2A
3.3352 2.0903 0.8329 0.6203 0.745 0 0.7414 2A
3.105 2.099 0.8 0.5597 0.6988 0 0.7414 2A

3.3594 2.0035 0.8541 0.5761 0.674 0 0.7414 2A
3.3869 2.1245 0.7976 0.5318 0.6667 0 0.7414 2A
3.2715 2.0469 0.8376 0.5869 0.7003 0 0.7414 2A
3.1111 2.1997 0.7835 0.5446 0.6946 0 0.7414 2A
3.3444 2.1758 0.8047 0.554 0.688 0 0.7414 2A
3.2883 2.2052 0.7435 0.5446 0.7319 0 0.7414 2A
3.2754 2.1917 0.7953 0.5105 0.6412 0 0.7414 2A
3.3197 2.1496 0.7553 0.5647 0.7477 0 0.7414 2A
3.3659 2.1548 0.7506 0.561 0.7469 0 0.7414 2A
3.1913 2.1023 0.7671 0.5469 0.7125 0 0.7414 2A
3.1006 2.1643 0.7859 0.5493 0.6985 0 0.7414 2A
3.0779 2.2286 0.7435 0.4801 0.6447 0 0.7414 2A
3.5248 2.0871 0.7882 0.5647 0.7164 0 0.7414 2A
3.2471 2.1238 0.7718 0.5248 0.681 0 0.7414 2A
3.9056 2.0411 0.7788 0.5738 0.7357 0 0.7414 2A

3.35 2.0725 0.7882 0.5634 0.7143 0 0.7414 2A
3.2314 2.125 0.7882 0.5236 0.6647 0 0.7414 2A
3.4649 2.0416 0.8118 0.5493 0.6763 0 0.7414 2A
3.4069 2.0763 0.8235 0.5812 0.7057 0 0.7414 2A
3.1458 2.1542 0.7365 0.5236 0.7115 0 0.7414 2A
3.2994 2.0758 0.8094 0.545 0.6745 0 0.7414 2A
3.1009 2.1 0.7929 0.5647 0.7122 0 0.7414 2A
3.1138 2.1408 0.7812 0.5164 0.6607 0 0.7414 2A
3.2659 2.1484 0.7953 0.5529 0.6953 0 0.7414 2A
3.2595 2.1252 0.8094 0.5399 0.6667 0 0.7414 2A
3.2538 2.1516 0.7718 0.56 0.7256 0 0.7414 2A
3.312 2.1279 0.8165 0.5929 0.7262 0 0.7414 2A

3.6419 2.1242 0.7694 0.5412 0.7034 0 0.7414 2A
3.2606 2.1896 0.7835 0.5401 0.6898 0 0.7414 2A
3.2818 2.1012 0.7882 0.5461 0.6937 0 0.7414 2A
3.3709 2.0947 0.8047 0.5849 0.7273 0 0.7414 2A
3.4375 2.1321 0.7859 0.5236 0.6667 0 0.7414 2A

88

FMT NAS PF TPS PS CD CA COA
3.2625 2.0979 0.7976 0.5976 0.7493 0 0.7414 2A
3.182 2.1239 0.7765 0.5236 0.6748 0 0.7414 2A

3.2852 2.1452 0.7765 0.5153 0.6636 0 0.7414 2A
3.3879 2.0808 0.8024 0.5718 0.7126 0 0.7414 2A
3.1565 2.159 0.7929 0.5376 0.6775 0 0.7414 2A
9.6613 1.2691 0.9976 0.2048 0.2053 4 1 2B
14.5224 1.215 0.9976 0.184 0.1844 6 1 2B
11.7831 1.1853 0.9976 0.1745 0.1749 6 1 2B
9.4254 1.3239 0.9976 0.2424 0.2429 4 1 2B
8.6008 1.3059 0.9976 0.208 0.2085 1 1 2B
10.2661 1.245 0.9976 0.228 0.2286 5 1 2B
9.1708 1.3808 0.9976 0.1943 0.1948 7 1 2B
11.9826 1.1678 0.9976 0.1844 0.1848 5 1 2B
8.544 1.3323 0.9976 0.1885 0.189 2 1 2B

9.1057 1.1754 0.9976 0.2043 0.2048 5 1 2B
8.5368 1.314 0.9976 0.1718 0.1722 6 1 2B
11.009 1.1913 0.9976 0.2214 0.222 1 1 2B
10.8566 1.1847 0.9976 0.1823 0.1827 3 1 2B
9.7578 1.1248 0.9976 0.2128 0.2133 3 1 2B
10.2408 1.2643 0.9976 0.1734 0.1738 6 1 2B
9.7044 1.1433 0.9976 0.1671 0.1675 4 1 2B
7.8368 1.3754 0.9976 0.2204 0.2209 4 1 2B
7.7933 1.3604 0.9976 0.1887 0.1891 4 1 2B
9.0284 1.2976 0.9976 0.1887 0.1891 3 1 2B
8.0753 1.35 0.9976 0.1925 0.1929 3 1 2B
9.801 1.1954 0.9976 0.2014 0.2019 3 1 2B

12.6654 1.1671 0.9976 0.1863 0.1868 3 1 2B
10.907 1.1154 0.9976 0.1679 0.1683 4 1 2B
10.0505 1.2916 0.9976 0.2235 0.2241 3 1 2B
8.0572 1.3414 0.9976 0.1801 0.1805 5 1 2B
12.1979 1.1457 0.9976 0.2134 0.2139 3 1 2B
9.0962 1.1588 0.9976 0.1818 0.1823 4 1 2B
12.6317 1.0305 0.9976 0.2047 0.2052 2 1 2B
10.8304 1.1223 0.9976 0.2304 0.231 5 1 2B
9.0401 1.2369 0.9976 0.1934 0.1939 3 1 2B
13.6755 1.1075 0.9976 0.1816 0.182 4 1 2B
11.6641 1.1749 0.9976 0.191 0.1915 3 1 2B
10.3065 1.1316 0.9976 0.1967 0.1971 2 1 2B
10.8157 1.2093 0.9976 0.1699 0.1703 5 1 2B
11.8751 1.1609 0.9976 0.1971 0.1976 2 1 2B
9.6545 1.2754 0.9976 0.1698 0.1702 7 1 2B
8.4899 1.2832 0.9976 0.1991 0.1995 2 1 2B
9.7525 1.2409 0.9976 0.227 0.2275 4 1 2B
9.0193 1.2372 0.9976 0.2156 0.2162 1 1 2B
10.2839 1.2625 0.9976 0.2306 0.2311 2 1 2B
10.512 1.1369 0.9976 0.181 0.1814 2 1 2B
10.6253 1.3631 0.9976 0.1855 0.186 5 1 2B

89

FMT NAS PF TPS PS CD CA COA
9.8558 1.1949 0.9976 0.1548 0.1551 4 1 2B
11.0848 1.1786 0.9976 0.1726 0.173 5 1 2B
11.8934 1.1896 0.9976 0.2241 0.2246 2 1 2B
10.255 1.1698 0.9976 0.2019 0.2024 3 1 2B
8.4128 1.2181 0.9976 0.1779 0.1783 1 1 2B
10.94 1.2577 0.9976 0.2225 0.223 2 1 2B

10.9993 1.1629 0.9976 0.2067 0.2071 5 1 2B
8.224 1.3251 0.9976 0.169 0.1695 4 1 2B

2.9554 5.1027 0.8212 0.5282 0.6429 0 0.7478 2C
2.8873 5.1343 0.7835 0.5459 0.6967 0 0.7478 2C
2.9975 5.1059 0.8 0.5211 0.651 0 0.7478 2C

2.96 5.1383 0.8141 0.5728 0.7032 0 0.7478 2C
2.838 5.126 0.8259 0.5141 0.6222 0 0.7478 2C

2.9695 5.1028 0.8235 0.5873 0.7135 0 0.7478 2C
2.8613 5.2233 0.7718 0.4929 0.6391 0 0.7478 2C
2.9569 5.077 0.8165 0.5469 0.6695 0 0.7478 2C
2.9513 5.1727 0.7859 0.5637 0.7177 0 0.7478 2C
2.9714 5.098 0.8 0.5354 0.6696 0 0.7478 2C
2.9434 5.1773 0.7859 0.5152 0.6548 0 0.7478 2C
3.0847 5.0751 0.84 0.6014 0.7163 0 0.7478 2C
2.8595 5.0662 0.8188 0.5738 0.7 0 0.7478 2C
2.9827 4.999 0.8588 0.541 0.6294 0 0.7478 2C
3.0386 5.104 0.8165 0.5377 0.659 0 0.7478 2C
3.0399 5.0367 0.8447 0.6009 0.7111 0 0.7478 2C
2.8708 5.19 0.7929 0.5822 0.7337 0 0.7478 2C
3.0122 5.1479 0.8259 0.5352 0.6477 0 0.7478 2C
2.9151 5.1919 0.7506 0.5 0.6656 0 0.7478 2C
2.9323 5.1839 0.8071 0.5423 0.6715 0 0.7478 2C
3.0615 5.1251 0.7741 0.5283 0.6829 0 0.7478 2C
2.8289 5.143 0.76 0.5446 0.716 0 0.7478 2C
2.9554 5.0656 0.7882 0.5728 0.7262 0 0.7478 2C
2.9036 5.1421 0.8118 0.5563 0.685 0 0.7478 2C
3.0008 5.2112 0.7553 0.5199 0.6873 0 0.7478 2C
3.138 5.0581 0.8071 0.5694 0.7055 0 0.7478 2C

2.9341 5.1025 0.7882 0.5296 0.6727 0 0.7478 2C
3.0917 5.0228 0.7953 0.541 0.6794 0 0.7478 2C
2.9684 5.0654 0.7929 0.5657 0.713 0 0.7478 2C
2.9835 5.1153 0.7929 0.5448 0.6875 0 0.7478 2C
2.9841 5.0265 0.8212 0.5516 0.6714 0 0.7478 2C
2.9824 5.0673 0.8353 0.5704 0.6826 0 0.7478 2C
2.8129 5.1439 0.7506 0.5354 0.7138 0 0.7478 2C
3.0551 5.0482 0.8259 0.5782 0.7011 0 0.7478 2C
3.0024 5.0869 0.8047 0.5788 0.7193 0 0.7478 2C
2.8538 5.155 0.7812 0.5305 0.6787 0 0.7478 2C
2.9129 5.1307 0.8165 0.5812 0.7118 0 0.7478 2C
2.8842 5.1079 0.8235 0.5469 0.6638 0 0.7478 2C
2.9341 5.1263 0.7882 0.5412 0.6866 0 0.7478 2C

90

FMT NAS PF TPS PS CD CA COA
2.9137 5.1132 0.8212 0.5751 0.7 0 0.7478 2C
2.8966 5.1063 0.7835 0.5129 0.6547 0 0.7478 2C
2.9744 5.175 0.7953 0.5542 0.6973 0 0.7478 2C
3.0675 5.0836 0.8 0.5461 0.6834 0 0.7478 2C
2.935 5.071 0.8188 0.5236 0.6398 0 0.7478 2C

2.8272 5.1135 0.8047 0.5211 0.6472 0 0.7478 2C
2.8883 5.0791 0.8141 0.5647 0.6936 0 0.7478 2C
2.9564 5.0979 0.7882 0.5141 0.6518 0 0.7478 2C
3.0022 5.139 0.7859 0.5576 0.7096 0 0.7478 2C
2.8994 5.066 0.8094 0.5129 0.6337 0 0.7478 2C
2.8379 5.1557 0.8024 0.5352 0.6667 0 0.7478 2C
3.7588 4.8069 0.9741 0.5835 0.599 1 1 2D
3.4789 4.7719 0.9906 0.5788 0.5843 2 1 2D
3.4735 4.7876 0.9788 0.5657 0.5779 0 1 2D
3.8007 4.8285 0.9906 0.5812 0.5867 3 1 2D

3.51 4.8097 0.9882 0.5981 0.6053 1 1 2D
3.5406 4.7746 0.9859 0.5708 0.5789 1 1 2D
3.696 4.845 0.9788 0.5637 0.5759 2 1 2D

3.6772 4.7752 0.9788 0.5906 0.6034 0 1 2D
3.5899 4.8433 0.9741 0.5896 0.6053 0 1 2D
3.652 4.7281 0.9835 0.5532 0.5625 4 1 2D

3.6699 4.8576 0.9788 0.5915 0.6043 1 1 2D
3.65 4.7465 0.9788 0.5626 0.5749 1 1 2D

3.3757 4.7804 0.9812 0.6226 0.6346 0 1 2D
3.6134 4.7194 0.9882 0.6455 0.6532 0 1 2D
3.7842 4.7993 0.9788 0.6329 0.6466 0 1 2D
3.8397 4.7077 0.9882 0.6 0.6071 1 1 2D
3.6795 4.8586 0.9812 0.6197 0.6316 0 1 2D
3.5925 4.8546 0.9835 0.5849 0.5947 0 1 2D
3.4133 4.848 0.9741 0.6085 0.6247 0 1 2D
3.5963 4.8895 0.9694 0.5563 0.5738 2 1 2D
3.5736 4.724 0.9835 0.5283 0.5372 1 1 2D
3.5786 4.7092 0.9882 0.5953 0.6024 2 1 2D
3.7691 4.6476 0.9788 0.5235 0.5348 2 1 2D
3.493 4.8323 0.9788 0.6009 0.6139 2 1 2D

3.4228 4.8737 0.9812 0.6071 0.6187 0 1 2D
3.7033 4.6742 0.9741 0.5354 0.5496 2 1 2D
3.5499 4.7487 0.9835 0.6043 0.6145 1 1 2D
3.7007 4.6675 0.9788 0.6009 0.6139 1 1 2D
3.5518 4.6937 0.9741 0.6033 0.6193 1 1 2D
3.5995 4.7868 0.9812 0.5943 0.6058 0 1 2D
3.7848 4.6869 0.9718 0.5587 0.5749 2 1 2D
3.7498 4.7653 0.9812 0.5835 0.5947 2 1 2D
3.5665 4.7174 0.9859 0.5519 0.5598 2 1 2D
3.5218 4.7339 0.9812 0.5972 0.6087 0 1 2D
3.8332 4.7273 0.9741 0.6085 0.6247 1 1 2D
3.485 4.805 0.9741 0.6094 0.6256 0 1 2D

91

FMT NAS PF TPS PS CD CA COA
3.5289 4.8139 0.9718 0.5459 0.5617 3 1 2D
3.464 4.8092 0.9788 0.5553 0.5673 1 1 2D

3.6728 4.773 0.9694 0.5613 0.5791 0 1 2D
3.6984 4.8241 0.9647 0.5446 0.5645 1 1 2D
3.7763 4.6909 0.9859 0.5859 0.5943 3 1 2D
3.6571 4.8935 0.9812 0.6123 0.6241 0 1 2D
3.5098 4.7184 0.9882 0.6052 0.6124 0 1 2D
3.6817 4.7436 0.9741 0.5495 0.5642 1 1 2D
3.6338 4.7682 0.9765 0.6118 0.6265 1 1 2D
3.7752 4.7118 0.9694 0.5647 0.5825 2 1 2D
3.483 4.7566 0.9835 0.6108 0.6211 1 1 2D

3.4327 4.7743 0.9882 0.5498 0.5564 0 1 2D
3.9431 4.7202 0.9765 0.5731 0.587 0 1 2D
3.6601 4.8122 0.9765 0.554 0.5673 0 1 2D

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

APPENDIX 3: MAUT FUNCTION

function(weights, data)
{

strip COA designator from data
 temp <- data[, 1:7] # get best and worst column data
 bestFMT <- min(temp[, 1])
 worstFMT <- max(temp[, 1])
 bestNAS <- max(temp[, 2])
 worstNAS <- min(temp[, 2])
 bestPF <- max(temp[, 3])
 worstPF <- min(temp[, 3])
 bestTPS <- max(temp[, 4])
 worstTPS <- min(temp[, 4])
 bestPS <- max(temp[, 5])
 worstPS <- min(temp[, 5])
 bestCD <- min(temp[, 6])
 worstCD <- max(temp[, 6])
 bestCA <- max(temp[, 7])
 worstCA <- min(temp[, 7])
 best <- c(bestFMT, bestNAS, bestPF, bestTPS, bestPS, bestCD, bestCA)
 worst <- c(worstFMT, worstNAS, worstPF, worstTPS, worstPS, worstCD, worstCA)
 # compute individual values for each column
 difference <- best - worst
 for(i in 1:length(temp[, 1])) {
 temp[i,] <- (temp[i,] - worst)/difference
 }
mult columns by weight and then sum the rows to get MAUT values
 x <- t(weights %*% t(temp))
 x <- data.frame(x, data[, 8])
 names(x) <- c("UTILITY", "COA")
 return(x)
}

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

APPENDIX 4: FSST PROGRAM

A. INSTANCE METHODS

1. AO

/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 13, 2001
 *
 * <P> This class establishes the Area of Operations (AO) for the
 * simulation. This class also establishes the parameters for
 * what distributions dictate where targets arrive in the AO.
**/

package fsst;
import simkit.*;
import simkit.smd.*;
import simkit.data.*;

public class AO{

// class variables
 public static RandomNumber seed;

// instance variables
 private RandomVariate xCoord;
 private RandomVariate yCoord;
 private Coordinate lowerLeft;
 private Coordinate upperRight;
 private String xDistribution;
 private String yDistribution;
 private Object[] xDistributionParameters;
 private Object[] yDistributionParameters;

// constructors
 static {seed = RandomFactory.getRandomNumber();}

 public AO(Coordinate theLowerLeft, Coordinate theUpperRight,
 String xDist, Object[] xDistParams, String yDist, Object[] yDistParams){
 xDistribution = xDist;
 xDistributionParameters = (Object[])xDistParams.clone();
 yDistribution = yDist;
 yDistributionParameters = (Object[])yDistParams.clone();
 lowerLeft = new Coordinate(theLowerLeft);
 upperRight = new Coordinate(theUpperRight);
 xCoord = RandomFactory.getRandomVariate(xDistribution, xDistributionParameters,
 RandomFactory.getRandomNumber());
 yCoord = RandomFactory.getRandomVariate(yDistribution, yDistributionParameters,
 RandomFactory.getRandomNumber());
 }

 public AO(AO theBox){
 this(theBox.getLowerLeft(),theBox.getUpperRight(), theBox.getXDistribution(),
 theBox.getXDistributionParameters(), theBox.getYDistribution(),
 theBox.getYDistributionParameters());
 }

// class methods
 public static void setSeed(long theSeed){
 seed.setSeed(theSeed);
 }

// instance methods
 public Coordinate getLowerLeft(){return new Coordinate(lowerLeft);}

 public Coordinate getUpperRight(){return new Coordinate(upperRight);}

96

 public Coordinate getRandomLocation(){
 double xCoordinate = xCoord.generate();
 double yCoordinate = upperRight.getYCoord()-yCoord.generate();
 if ((xCoordinate >= lowerLeft.getXCoord()) &&
 (xCoordinate <= upperRight.getXCoord()) &&
 (yCoordinate >= 0)){
 return new Coordinate(xCoordinate, yCoordinate);
 }
 else {
 return this.getRandomLocation();
 }
 }

 public String getXDistribution(){return new String(xDistribution);}

 public String getYDistribution(){return new String(yDistribution);}

 public Object[] getXDistributionParameters(){
 return (Object[])xDistributionParameters.clone();
 }

 public Object[] getYDistributionParameters(){
 return (Object[])yDistributionParameters.clone();
 }

 public String toString(){
 return "Lower left: " + this.getLowerLeft() + ", Upper Right: " +
 this.getUpperRight() + ", X distribution: " + this.getXDistribution() +
 ", X distribution parameters: " + this.getXDistributionParameters() +
 ", Y distribution: " + this.getYDistribution() +
 ", Y distribution parameters: " + this.getYDistributionParameters();
 }

}

2. BattlefieldData
/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 13, 2001
 *
 * <P> This class tracks the battlefield data such as makeup, etc.
 *
**/

package fsst;
import java.util.*;

public class BattleFieldData{

 private double percentArmor;
 private double percentInfantryInOpen;
 private double percentInfantryDugIn;
 private double percentArmoredPC;
 private double percentLightSkinVehicle;

 private int destroyArmor;
 private int destroyArmorSalvo;
 private int neutralizeArmor;
 private int neutralizeArmorSalvo;
 private int suppressArmor;
 private int suppressArmorSalvo;

 private int destroyIIO;
 private int destroyIIOSalvo;
 private int neutralizeIIO;
 private int neutralizeIIOSalvo;
 private int suppressIIO;
 private int suppressIIOSalvo;

97

 private int destroyIDI;
 private int destroyIDISalvo;
 private int neutralizeIDI;
 private int neutralizeIDISalvo;
 private int suppressIDI;
 private int suppressIDISalvo;

 private int destroyAPC;
 private int destroyAPCSalvo;
 private int neutralizeAPC;
 private int neutralizeAPCSalvo;
 private int suppressAPC;
 private int suppressAPCSalvo;

 private int destroyLSV;
 private int destroyLSVSalvo;
 private int neutralizeLSV;
 private int neutralizeLSVSalvo;
 private int suppressLSV;
 private int suppressLSVSalvo;

 private double percentDestroy;
 private double percentNeutralize;
 private double percentSuppress;

 private double fleeProbability;
 private long seed;
 private Random r;

 private double collateralDamageRadius;
 private double collateralDamagePercent;
 private int numberCollateralDamageCausingRounds;

 public BattleFieldData(double thePercentArmor,int theDestroyArmor,
 int theDestroyArmorSalvo,int theNeutralizeArmor,int theNeutralizeArmorSalvo,
 int theSuppressArmor,int theSuppressArmorSalvo,double thePercentInfantryInOpen,
 int theDestroyIIO,int theDestroyIIOSalvo,int theNeutralizeIIO,
 int theNeutralizeIIOSalvo,int theSuppressIIO,int theSuppressIIOSalvo,
 double thePercentInfantryDugIn,int theDestroyIDI,int theDestroyIDISalvo,
 int theNeutralizeIDI,int theNeutralizeIDISalvo,int theSuppressIDI,
 int theSuppressIDISalvo,double thePercentArmoredPC,int theDestroyAPC,
 int theDestroyAPCSalvo,int theNeutralizeAPC,int theNeutralizeAPCSalvo,
 int theSuppressAPC,int theSuppressAPCSalvo,double thePercentLightSkinVehicle,
 int theDestroyLSV,int theDestroyLSVSalvo,int theNeutralizeLSV,
 int theNeutralizeLSVSalvo,int theSuppressLSV,int theSuppressLSVSalvo,
 double thePercentDestroy, double thePercentNeutralize, double thePercentSuppress,
 double theFleeProbability,long theSeed,double theCollateralDamageRadius,
 double theCollateralDamagePercent){

 percentArmor = thePercentArmor;
 destroyArmor = theDestroyArmor;
 destroyArmorSalvo = theDestroyArmorSalvo;
 neutralizeArmor = theNeutralizeArmor;
 neutralizeArmorSalvo = theNeutralizeArmorSalvo;
 suppressArmor = theSuppressArmor;
 suppressArmorSalvo = theSuppressArmorSalvo;

 percentInfantryInOpen = thePercentInfantryInOpen;
 destroyIIO = theDestroyIIO;
 destroyIIOSalvo = theDestroyIIOSalvo;
 neutralizeIIO = theNeutralizeIIO;
 neutralizeIIOSalvo = theNeutralizeIIOSalvo;
 suppressIIO = theSuppressIIO;
 suppressIIOSalvo = theSuppressIIOSalvo;

 percentInfantryDugIn = thePercentInfantryDugIn;
 destroyIDI = theDestroyIDI;
 destroyIDISalvo = theDestroyIDISalvo;
 neutralizeIDI = theNeutralizeIDI;
 neutralizeIDISalvo = theNeutralizeIDISalvo;

98

 suppressIDI = theSuppressIDI;
 suppressIDISalvo = theSuppressIDISalvo;

 percentArmoredPC = thePercentArmoredPC;
 destroyAPC = theDestroyAPC;
 destroyAPCSalvo = theDestroyAPCSalvo;
 neutralizeAPC = theNeutralizeAPC;
 neutralizeAPCSalvo = theNeutralizeAPCSalvo;
 suppressAPC = theSuppressAPC;
 suppressAPCSalvo = theSuppressAPCSalvo;

 percentLightSkinVehicle = thePercentLightSkinVehicle;
 destroyLSV = theDestroyLSV;
 destroyLSVSalvo = theDestroyLSVSalvo;
 neutralizeLSV = theNeutralizeLSV;
 neutralizeLSVSalvo = theNeutralizeLSVSalvo;
 suppressLSV = theSuppressLSV;
 suppressLSVSalvo = theSuppressLSVSalvo;

 percentDestroy = thePercentDestroy;
 percentNeutralize = thePercentNeutralize;
 percentSuppress = thePercentSuppress;

 setSeed(theSeed);
 r = new Random(theSeed);
 setFleeProbability(theFleeProbability);
 collateralDamageRadius = theCollateralDamageRadius;
 collateralDamagePercent = theCollateralDamagePercent;
 }

 public BattleFieldData(BattleFieldData theBattleFieldData){
 percentArmor = theBattleFieldData.getPercentArmor();
 destroyArmor = theBattleFieldData.getDestroyArmor();
 destroyArmorSalvo = theBattleFieldData.getDestroyArmorSalvo();
 neutralizeArmor = theBattleFieldData.getNeutralizeArmor();
 neutralizeArmorSalvo = theBattleFieldData.getNeutralizeArmorSalvo();
 suppressArmor = theBattleFieldData.getSuppressArmor();
 suppressArmorSalvo = theBattleFieldData.getSuppressArmorSalvo();

 percentInfantryInOpen = theBattleFieldData.getPercentIIO();
 destroyIIO = theBattleFieldData.getDestroyIIO();
 destroyIIOSalvo = theBattleFieldData.getDestroyIIOSalvo();
 neutralizeIIO = theBattleFieldData.getNeutralizeIIO();
 neutralizeIIOSalvo = theBattleFieldData.getNeutralizeIIOSalvo();
 suppressIIO = theBattleFieldData.getSuppressIIO();
 suppressIIOSalvo = theBattleFieldData.getSuppressIIOSalvo();

 percentInfantryDugIn = theBattleFieldData.getPercentIDI();
 destroyIDI = theBattleFieldData.getDestroyIDI();
 destroyIDISalvo = theBattleFieldData.getDestroyIDISalvo();
 neutralizeIDI = theBattleFieldData.getNeutralizeIDI();
 neutralizeIDISalvo = theBattleFieldData.getNeutralizeIDISalvo();
 suppressIDI = theBattleFieldData.getSuppressIDI();
 suppressIDISalvo = theBattleFieldData.getSuppressIDISalvo();

 percentArmoredPC = theBattleFieldData.getPercentAPC();
 destroyAPC = theBattleFieldData.getDestroyAPC();
 destroyAPCSalvo = theBattleFieldData.getDestroyAPCSalvo();
 neutralizeAPC = theBattleFieldData.getNeutralizeAPC();
 neutralizeAPCSalvo = theBattleFieldData.getNeutralizeAPCSalvo();
 suppressAPC = theBattleFieldData.getSuppressAPC();
 suppressAPCSalvo = theBattleFieldData.getSuppressAPCSalvo();

 percentLightSkinVehicle = theBattleFieldData.getPercentLSV();
 destroyLSV = theBattleFieldData.getDestroyLSV();
 destroyLSVSalvo = theBattleFieldData.getDestroyLSVSalvo();
 neutralizeLSV = theBattleFieldData.getNeutralizeLSV();
 neutralizeLSVSalvo = theBattleFieldData.getNeutralizeLSVSalvo();
 suppressLSV = theBattleFieldData.getSuppressLSV();
 suppressLSVSalvo = theBattleFieldData.getSuppressLSVSalvo();

99

 percentDestroy = theBattleFieldData.getPercentDestroy();
 percentNeutralize = theBattleFieldData.getPercentNeutralize();
 percentSuppress = theBattleFieldData.getPercentSuppress();

 setSeed(theBattleFieldData.getSeed());
 r = new Random(seed);
 setFleeProbability(theBattleFieldData.getFleeProbability());
 collateralDamageRadius = theBattleFieldData.getCollateralDamageRadius();
 collateralDamagePercent = theBattleFieldData.getCollateralDamagePercent();
 }

 public double getPercentArmor(){return percentArmor;}

 public int getDestroyArmor(){return destroyArmor;}

 public int getDestroyArmorSalvo(){return destroyArmorSalvo;}

 public int getNeutralizeArmor(){return neutralizeArmor;}

 public int getNeutralizeArmorSalvo(){return neutralizeArmorSalvo;}

 public int getSuppressArmor(){return suppressArmor;}

 public int getSuppressArmorSalvo(){return suppressArmorSalvo;}

 public double getPercentIIO(){return percentInfantryInOpen;}

 public int getDestroyIIO(){return destroyIIO;}

 public int getDestroyIIOSalvo(){return destroyIIOSalvo;}

 public int getNeutralizeIIO(){return neutralizeIIO;}

 public int getNeutralizeIIOSalvo(){return neutralizeIIOSalvo;}

 public int getSuppressIIO(){return suppressIIO;}

 public int getSuppressIIOSalvo(){return suppressIIOSalvo;}

 public double getPercentIDI(){return percentInfantryDugIn;}

 public int getDestroyIDI(){return destroyIDI;}

 public int getDestroyIDISalvo(){return destroyIDISalvo;}

 public int getNeutralizeIDI(){return neutralizeIDI;}

 public int getNeutralizeIDISalvo(){return neutralizeIDISalvo;}

 public int getSuppressIDI(){return suppressIDI;}

 public int getSuppressIDISalvo(){return suppressIDISalvo;}

 public double getPercentAPC(){return percentArmoredPC;}

 public int getDestroyAPC(){return destroyAPC;}

 public int getDestroyAPCSalvo(){return destroyAPCSalvo;}

 public int getNeutralizeAPC(){return neutralizeAPC;}

 public int getNeutralizeAPCSalvo(){return neutralizeAPCSalvo;}

 public int getSuppressAPC(){return suppressAPC;}

 public int getSuppressAPCSalvo(){return suppressAPCSalvo;}

 public double getPercentLSV(){return percentLightSkinVehicle;}

 public int getDestroyLSV(){return destroyLSV;}

100

 public int getDestroyLSVSalvo(){return destroyLSVSalvo;}

 public int getNeutralizeLSV(){return neutralizeLSV;}

 public int getNeutralizeLSVSalvo(){return neutralizeLSVSalvo;}

 public int getSuppressLSV(){return suppressLSV;}

 public int getSuppressLSVSalvo(){return suppressLSVSalvo;}

 public double getPercentDestroy(){return percentDestroy;}

 public double getPercentNeutralize(){return percentNeutralize;}

 public double getPercentSuppress(){return percentSuppress;}

 public boolean isDestroyed(String targetType, int hits){
 if (targetType.equals("Armor")){
 return (hits>getDestroyArmor());
 }
 else if(targetType.equals("InfantryInOpen")){
 return (hits>getDestroyIIO());
 }
 else if(targetType.equals("InfantryDugIn")){
 return (hits>getDestroyIDI());
 }
 else if(targetType.equals("APC")){
 return (hits>getDestroyAPC());
 }
 else {
 return (hits>getDestroyLSV());
 }
 }

 public boolean isNeutralized(String targetType, int hits){
 if (targetType.equals("Armor")){
 return (hits>getNeutralizeArmor());
 }
 else if(targetType.equals("InfantryInOpen")){
 return (hits>getNeutralizeIIO());
 }
 else if(targetType.equals("InfantryDugIn")){
 return (hits>getNeutralizeIDI());
 }
 else if(targetType.equals("APC")){
 return (hits>getNeutralizeAPC());
 }
 else {
 return (hits>getNeutralizeLSV());
 }
 }

 public boolean isSuppressed(String targetType, int closeCalls){
 if (targetType.equals("Armor")){
 return (closeCalls>getSuppressArmor());
 }
 else if(targetType.equals("InfantryInOpen")){
 return (closeCalls>getSuppressIIO());
 }
 else if(targetType.equals("InfantryDugIn")){
 return (closeCalls>getSuppressIDI());
 }
 else if(targetType.equals("APC")){
 return (closeCalls>getSuppressAPC());
 }
 else {
 return (closeCalls>getSuppressLSV());
 }
 }

 public double getFleeProbability(){return fleeProbability;}

101

 public void setFleeProbability(double theFleeProbability){
 fleeProbability = theFleeProbability;
 }

 public double getCollateralDamageRadius(){return collateralDamageRadius;}

 public double getCollateralDamagePercent(){return collateralDamagePercent;}

 public boolean didFlee(){return (r.nextDouble()<fleeProbability);}

 public long getSeed(){return seed;}

 public void setSeed(long theSeed){
 seed = theSeed;
 }

 public String getTargetType(){
 double targetGenerator = r.nextDouble();
 if (targetGenerator <= percentArmor){
 return "Armor";
 }
 else if (targetGenerator <= (percentArmor+percentInfantryInOpen)){
 return "InfantryInOpen";
 }
 else if (targetGenerator <= (percentArmor+percentInfantryInOpen+
 percentInfantryDugIn)){
 return "InfantryDugIn";
 }
 else if (targetGenerator <= (percentArmor+percentInfantryInOpen+
 percentInfantryDugIn + percentArmoredPC)){
 return "APC";
 }
 else{
 return "LightSkinVehicle";
 }
 }

 public String getFireMissionType(){
 double missionGenerator = r.nextDouble();
 if (missionGenerator <= percentDestroy){
 return "Destroy";
 }
 else if (missionGenerator <= (percentDestroy+percentNeutralize)){
 return "Neutralize";
 }
 else{
 return "Suppress";
 }
 }

 public int getSalvoSize(String theTargetType, String theMission){
 if ((theTargetType.equals("Armor"))&&(theMission.equals("Destroy"))){
 return destroyArmorSalvo;
 }
 else if ((theTargetType.equals("Armor"))&&(theMission.equals("Neutralize"))){
 return neutralizeArmorSalvo;
 }
 else if ((theTargetType.equals("Armor"))&&(theMission.equals("Suppress"))){
 return suppressArmorSalvo;
 }
 else if ((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Destroy"))){
 return destroyIIOSalvo;
 }
 else if
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Neutralize"))){
 return neutralizeIIOSalvo;
 }
 else if
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Suppress"))){
 return suppressIIOSalvo;

102

 }
 else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Destroy"))){
 return destroyIDISalvo;
 }
 else if
((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Neutralize"))){
 return neutralizeIDISalvo;
 }
 else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Suppress"))){
 return suppressIDISalvo;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Destroy"))){
 return destroyAPCSalvo;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Neutralize"))){
 return neutralizeAPCSalvo;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Suppress"))){
 return suppressAPCSalvo;
 }
 else if
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Destroy"))){
 return destroyLSVSalvo;
 }
 else if
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Neutralize"))){
 return neutralizeLSVSalvo;
 }
 else{
 return suppressLSVSalvo;
 }
 }

 public int getHitsNeeded(String theTargetType, String theMission){
 if ((theTargetType.equals("Armor"))&&(theMission.equals("Destroy"))){
 return destroyArmor;
 }
 else if ((theTargetType.equals("Armor"))&&(theMission.equals("Neutralize"))){
 return neutralizeArmor;
 }
 else if ((theTargetType.equals("Armor"))&&(theMission.equals("Suppress"))){
 return suppressArmor;
 }
 else if ((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Destroy"))){
 return destroyIIO;
 }
 else if
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Neutralize"))){
 return neutralizeIIO;
 }
 else if
((theTargetType.equals("InfantryInOpen"))&&(theMission.equals("Suppress"))){
 return suppressIIO;
 }
 else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Destroy"))){
 return destroyIDI;
 }
 else if
((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Neutralize"))){
 return neutralizeIDI;
 }
 else if ((theTargetType.equals("InfantryDugIn"))&&(theMission.equals("Suppress"))){
 return suppressIDI;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Destroy"))){
 return destroyAPC;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Neutralize"))){
 return neutralizeAPC;
 }
 else if ((theTargetType.equals("APC"))&&(theMission.equals("Suppress"))){

103

 return suppressAPC;
 }
 else if
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Destroy"))){
 return destroyLSV;
 }
 else if
((theTargetType.equals("LightSkinVehicle"))&&(theMission.equals("Neutralize"))){
 return neutralizeLSV;
 }
 else{
 return suppressLSV;
 }
 }

 public int getDestroy(String theTargetType){
 if (theTargetType.equals("Armor")){
 return destroyArmor;
 }
 else if (theTargetType.equals("InfantryInOpen")){
 return destroyIIO;
 }
 else if (theTargetType.equals("InfantryDugIn")){
 return destroyIDI;
 }
 else if (theTargetType.equals("APC")){
 return destroyAPC;
 }
 else{
 return destroyLSV;
 }
 }

 public int getNeutralize(String theTargetType){
 if (theTargetType.equals("Armor")){
 return neutralizeArmor;
 }
 else if (theTargetType.equals("InfantryInOpen")){
 return neutralizeIIO;
 }
 else if (theTargetType.equals("InfantryDugIn")){
 return neutralizeIDI;
 }
 else if (theTargetType.equals("APC")){
 return neutralizeAPC;
 }
 else{
 return neutralizeLSV;
 }
 }

 public int getSuppress(String theTargetType){
 if (theTargetType.equals("Armor")){
 return suppressArmor;
 }
 else if (theTargetType.equals("InfantryInOpen")){
 return suppressIIO;
 }
 else if (theTargetType.equals("InfantryDugIn")){
 return suppressIDI;
 }
 else if (theTargetType.equals("APC")){
 return suppressAPC;
 }
 else{
 return suppressLSV;
 }
 }

 public void increaseNumberCollateralDamageCausingRounds(){
 numberCollateralDamageCausingRounds++;

104

 }

 public int getNumberCollateralDamageCausingRounds(){
 return numberCollateralDamageCausingRounds;
 }

 public void resetCollateralDamageCausingRounds(){
 numberCollateralDamageCausingRounds=0;
 }
 public double getRandomNumber(){return r.nextDouble();}

}

3. Shooter
/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 13, 2001
 *
 * <P> This class creates an instance of an artillery piece (shooter).
 *
**/

package fsst;
import simkit.*;
import simkit.data.*;
import simkit.smd.*;
import java.text.DecimalFormat;

public class Shooter extends SimEntityBase{

// instance variables
 private Coordinate shooterLocation;
 private double shooterRange;
 private double probableErrorRange;
 private double probableErrorDeflection;
 private double maxRateOfFire;
 private String acquireServiceDistribution;
 private String firingServiceDistribution;
 private RandomVariate acquireServiceTime;
 private RandomVariate firingServiceTime;
 private RandomVariate shotRangeError;
 private RandomVariate shotDeflError;
 private int numberRounds;
 private int startNumberRounds;
 private int burstRadius;
 private double DestroyBurstRadius;
 private double NeutralizeBurstRadius;
 private double SuppressBurstRadius;
 private double meanProjectileVelocity;
 private String platformType;
 private int numberGuns;

// constructor methods
 public Shooter(Coordinate theShooterLocation, double theShooterRange,
 double thePER, double thePED, String theAcquireServiceDistribution,
 Object[] theAcquireParameters, String theFiringServiceDistribution,
 Object[] theFiringParameters, double theMaxRateOfFire, long firingSeed,
 long acquireSeed, int rounds, int theBurstRadius,double theMeanProjectileVelocity,
 String thePlatformType, int theNumberGuns){
 acquireServiceTime = RandomFactory.getRandomVariate(theAcquireServiceDistribution,
 theAcquireParameters,acquireSeed);
 firingServiceTime = RandomFactory.getRandomVariate(theFiringServiceDistribution,
 theFiringParameters,firingSeed);
 shotRangeError = RandomFactory.getRandomVariate("Normal",
 new Object[]{new Double(0.0),new Double(thePER)});
 shotDeflError = RandomFactory.getRandomVariate("Normal",new Object[]{new
Double(0.0),
 new Double(thePED)});
 setAcquireServiceDistribution(theAcquireServiceDistribution);

105

 setFiringServiceDistribution(theFiringServiceDistribution);
 shooterLocation = new Coordinate(theShooterLocation);
 shooterRange = theShooterRange;
 probableErrorRange = thePER;
 probableErrorDeflection = thePED;
 startNumberRounds = rounds;
 numberRounds = rounds;
 burstRadius = theBurstRadius;
 DestroyBurstRadius = Math.sqrt(18*burstRadius*burstRadius);
 NeutralizeBurstRadius = Math.sqrt(6*burstRadius*burstRadius);
 SuppressBurstRadius = 2*Math.sqrt(3*burstRadius*burstRadius);
 meanProjectileVelocity = theMeanProjectileVelocity;
 platformType = new String(thePlatformType);
 maxRateOfFire = theMaxRateOfFire;
 numberGuns = theNumberGuns;
 }

// class methods

 public boolean inRange(Target theTarget){
 return (shooterLocation.distanceFrom(theTarget.getTargetLocation())<=shooterRange);
 }

 public Coordinate getShooterLocation(){return new Coordinate(shooterLocation);}

 public double getShooterRange(){return shooterRange;}

 public void setShooterRange(double theShooterRange){
 shooterRange = theShooterRange;
 }

 public double getPER(){return probableErrorRange;}

 public void setPER(double thePER){
 probableErrorRange = thePER;
 }

 public double getPED(){return probableErrorDeflection;}

 public void setPED(double thePED){
 probableErrorDeflection = thePED;
 }

 public void setAcquireServiceDistribution(String newDistribution){
 acquireServiceDistribution = newDistribution;
 }

 public void setFiringServiceDistribution(String newDistribution){
 firingServiceDistribution = newDistribution;
 }

 public String getAcquireDistribution(){return
acquireServiceTime.getClass().getName();}

 public String getFiringDistribution(){return firingServiceTime.getClass().getName();}

 public void setAcquireParameters(Object[] newParameters){
 acquireServiceTime.setParameters(newParameters);
 }

 public void setFiringParameters(Object[] newParameters){
 firingServiceTime.setParameters(newParameters);
 }

 public Object[] getAcquireParameters(){return acquireServiceTime.getParameters();}

 public Object[] getFiringParameters(){return firingServiceTime.getParameters();}

 public double getServiceTime(Target theTarget){
 int volleys = (int)Math.ceil((double)theTarget.getSalvoSize()/numberGuns);;
 double tgtRange = shooterLocation.distanceFrom(theTarget.getTargetLocation());

106

 double tof = tgtRange/meanProjectileVelocity;
 double firingTime = firingServiceTime.generate();
 double acquireTime = acquireServiceTime.generate();
 if (firingTime<0.0){
 firingTime = 0.0 + volleys/maxRateOfFire;
 }
 else{
 firingTime += volleys/maxRateOfFire;;
 }
 if (acquireTime<0.0){
 acquireTime = 0.0;
 }
 return firingTime + acquireTime + tof;
 }

 public double getRepeatServiceTime(Target theTarget){
 int volleys = (int)Math.ceil((double)theTarget.getSalvoSize()/numberGuns);;
 double firingTime = volleys/maxRateOfFire;
 double tgtRange = shooterLocation.distanceFrom(theTarget.getTargetLocation());
 double tof = tgtRange/meanProjectileVelocity;
 return firingTime + tof;
 }

 public int getNumberRounds(){return numberRounds;}

 public boolean hasRounds(){return (numberRounds>0);}

 public void decrementRounds(int roundsFired){
 numberRounds -= roundsFired;
 }

 public void incrementRounds(int resupply){
 numberRounds+=resupply;
 }

 public Coordinate getSingleShotLocation(Coordinate theTarget){
 double tgtRange = shooterLocation.distanceFrom(theTarget);
 double xVec = (theTarget).getXCoord()-shooterLocation.getXCoord();
 double angle = Math.acos(xVec/tgtRange);
 double deflectionError = tgtRange/1000*shotDeflError.generate();
 double rangeError = shotRangeError.generate();
 double deltaX = Math.cos(angle)*rangeError + Math.sin(angle)*deflectionError;
 double deltaY = Math.sin(angle)*rangeError - Math.cos(angle)*deflectionError;
 Coordinate shotLocation = (theTarget).incrementBy(new Coordinate(deltaX,deltaY));
 return new Coordinate(shotLocation);
 }

 public int getBurstRadius(){return burstRadius;}

 public String getPlatformType(){return new String(platformType);}

 public void reset(){
 super.reset();
 numberRounds = startNumberRounds;
 }

 public String toString(){
 return "Shooter is: " + platformType + ", its location is: " +
 this.getShooterLocation() + ", shooter range is: " + this.getShooterRange() +
 ", shooter PER is: " + this.getPER() +
 ", shooter PED is: " + this.getPED() +
 ", shooter has: " + this.getNumberRounds() + " rounds remaining.";
 }

}

4. Target
/**
 * Juan K. Ulloa

 * Thesis: FSST

107

 * January 13, 2001
 *
 * <P> This class creates an instance of a target that stores the
 * time that the call for fire (CFF) is initially made.
 * This time is the arrival time of the target.
**/

package fsst;
import simkit.*;
import simkit.data.*;
import simkit.smd.*;
import java.util.*;

public class Target{

// instance variables
 private BattleFieldData battleField;
 private TargetState state;
 private double arrivalTime;
 private Coordinate targetLocation;
 private String targetType;
 private String mission;
 private int salvoSize;
 private int closeCalls;
 private int hits;
 private int hitsNeeded;
 private int hitsToDestroy;
 private int hitsToNeutralize;
 private int closeCallsToSuppress;
 private double collateralDamageRadius;
 private double collateralDamagePercentage;
 private Random r;

// constructor methods
 public Target(){
 arrivalTime = Schedule.getSimTime();
 }

 public Target(AO theBox, BattleFieldData theBattleField){
 state = TargetState.UNSCATHED;
 arrivalTime = Schedule.getSimTime();
 targetLocation = new Coordinate(theBox.getRandomLocation());
 battleField = theBattleField;
 targetType = battleField.getTargetType();
 mission = battleField.getFireMissionType();
 salvoSize = battleField.getSalvoSize(targetType,mission);
 hitsToDestroy = battleField.getDestroy(targetType);
 hitsToNeutralize = battleField.getNeutralize(targetType);
 closeCallsToSuppress = battleField.getSuppress(targetType);
 hitsNeeded = battleField.getHitsNeeded(targetType,mission);
 collateralDamageRadius = battleField.getCollateralDamageRadius();
 collateralDamagePercentage = battleField.getCollateralDamagePercent();
 }

// class methods
 public double getArrivalTime(){return arrivalTime;}

 public String getTargetState(){return state.toString();}

 public Coordinate getTargetLocation(){return new Coordinate(targetLocation);}

 public String getTargetType(){return new String(targetType);}

 public String getMission(){return new String(mission);}

 public int getSalvoSize(){return salvoSize;}

 public int getHitsNeeded(){return hitsNeeded;}

 public int getHits(){return hits;}

108

 public int getCloseCalls(){return closeCalls;}

 public boolean isFireMissionSuccessful(Shooter theShooter){
 int burstRadius = theShooter.getBurstRadius();
 double missedBy;
 for(int i=0;i<salvoSize;i++){
 missedBy = (theShooter.getSingleShotLocation(new Coordinate(targetLocation))).
 distanceFrom(targetLocation);
 if (missedBy <= burstRadius){
 hits++;
 }
 if (missedBy > battleField.getCollateralDamageRadius()){
 if (battleField.getRandomNumber()<battleField.getCollateralDamagePercent()){
 battleField.increaseNumberCollateralDamageCausingRounds();
 }
 }
 if ((missedBy <= (2*burstRadius))&&(mission.equals("Suppress"))){
 closeCalls++;
 }
 }
 setState();
 if (mission.equals("Suppress")){
 return (closeCalls>=hitsNeeded);
 }
 else {
 return (hits>=hitsNeeded);
 }
 }

 public void setState(){
 if (closeCalls>=closeCallsToSuppress){
 state = TargetState.SUPPRESSED;
 }
 if (hits>=hitsToNeutralize){
 state = TargetState.NEUTRALIZED;
 }
 if (hits>=hitsToDestroy){
 state = TargetState.DESTROYED;
 }
 }

 public void setSalvoSize(int newSalvoSize){
 salvoSize = newSalvoSize;
 }

 public String toString(){
 return getTargetType() + " arrived at " + getArrivalTime() + ",at location: " +
 this.getTargetLocation() + ". The mission was to: " + this.getMission() +
 ". The target is currently " + state.toString();
 }

}

5. TargetState

/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 13, 2001
 *
 * <P> This class tracks the state of the target being engaged.
 *
**/

package fsst;

public class TargetState{

 public static final TargetState UNSCATHED= new TargetState("Unscathed");
 public static final TargetState SUPPRESSED = new TargetState("Suppressed");
 public static final TargetState NEUTRALIZED = new TargetState("Neutralized");

109

 public static final TargetState DESTROYED = new TargetState("Destroyed");

 private String state;

 protected TargetState(String theState){
 state = new String(theState);
 }

 public String toString(){
 return state;
 }

}

6. TargetArrivalProcess

/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 12, 2001
 *
 * <P> This class simulates the arrival process of targets.
 *
**/

package fsst;
import simkit.*;
import simkit.data.*;

public class TgtArrivalProcess extends SimEntityBase {

// instance variables
 private int numberArrivals;
 private RandomVariate arrivalTimeGenerator;

// constructor methods
 public TgtArrivalProcess(String distribution, Object[] theParameters, long seed){
 arrivalTimeGenerator =
 RandomFactory.getRandomVariate(distribution,theParameters,seed);
 }

// instance methods
 public String getDistribution(){return arrivalTimeGenerator.getClass().getName();}

 public void setParameters(Object[] newParameters){
 arrivalTimeGenerator.setParameters(newParameters);
 }

 public Object[] getParameters(){return arrivalTimeGenerator.getParameters();}

 public int getNumberArrivals(){return numberArrivals;}

 public void doRun(){
 double temp = arrivalTimeGenerator.generate();
 if (temp<0.0){
 temp = 0.0;
 }
 numberArrivals = 0;
 waitDelay("TargetArrival",temp);
 }

 public void doTargetArrival(){
 double temp = arrivalTimeGenerator.generate();
 if (temp<0.0){
 temp = 0.0;
 }
 numberArrivals++;
 waitDelay("TargetArrival",temp);
 }

 public void reset(){

110

 super.reset();
 numberArrivals = 0;
 }

}

7. TargetServer2
/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 19, 2001
 *
 * <P> This class implements the process of firing targets.
 *
**/

package fsst;
import simkit.*;
import simkit.data.*;
import java.util.*;

public class TgtServer2 extends SimEntityBase{

// instance variables
 // parameters
 private int maxNumberShooters;
 // state variables
 private Vector queue = new Vector();
 private int queueSize;
 private Vector shooters;
 private int numberMissionRepeats;
 private int numberAvailableShooters;
 private int numberFireMissionsServed;
 private int numberMissionsRejected;
 private int numberSuccessfulMissions;
 private int numberUnsuccessfulMissions;
 private AO box;
 private BattleFieldData battleFieldData;
 private double[] weights;

// constructor methods
 public TgtServer2(Vector theShooters, AO theBox, BattleFieldData theBattleFieldData,
 double[] theWeights){
 battleFieldData = new BattleFieldData(theBattleFieldData);
 box = new AO(theBox);
 setNumberShooters(theShooters.size());
 shooters = (Vector)theShooters.clone();
 numberAvailableShooters = maxNumberShooters;
 for(int i=0;i<shooters.size();i++){
 queue.add(new LinkedList());
 }
 weights = theWeights;
 }

// instance methods
 public void doTargetArrival(){
 Target newFireMission = new Target(box,battleFieldData);
 Vector whoIsInRange = new Vector();
 int firer;
 for(int i=0;i<shooters.size();i++){
 if (((Shooter)shooters.get(i)).inRange(newFireMission)){
 whoIsInRange.add(new Integer(i));
 }
 }
 if (whoIsInRange.size()>0) {
 firer = getShooter1(whoIsInRange,newFireMission);
 if (firer>=0){
 ((LinkedList)queue.get(firer)).add(newFireMission);
 firePropertyChange("tgtsInQueue",queueSize,++queueSize);
 if (((LinkedList)queue.get(firer)).size() == 1){

111

 waitDelay("FireMission",0.0,new Integer(firer));
 }
 }
 else{
 firePropertyChange("numberMissionsRejected",numberMissionsRejected,
 ++numberMissionsRejected);
 }
 }
 else {
 firePropertyChange("numberMissionsRejected",numberMissionsRejected,
 ++numberMissionsRejected);
 }
 }

 public void doFireMission(Integer theFirer){
 int firer = theFirer.intValue();
 Target thisFireMission = (Target)((LinkedList)queue.get(firer)).getFirst();
 double thisTimeInQueue = Schedule.getSimTime() - thisFireMission.getArrivalTime();
 Vector parameters = new Vector();
 parameters.add(thisFireMission);
 parameters.add(theFirer);
 firePropertyChange("tgtsInQueue",queueSize,--queueSize);
 firePropertyChange("numberAvailableShooters",numberAvailableShooters,
 --numberAvailableShooters);
 if((((Shooter)shooters.get(firer)).getNumberRounds()<
 thisFireMission.getSalvoSize())&&(((Shooter)shooters.get(firer)).hasRounds())){
 thisFireMission.setSalvoSize(((Shooter)shooters.get(firer)).getNumberRounds());
 }
// Check to see if shooter has enough rounds left to fire
 if (!((Shooter)shooters.get(firer)).hasRounds()){
 waitDelay("FireMissionNeverFired",0.0,parameters);
 }
 // mission successful
 else if (thisFireMission.isFireMissionSuccessful((Shooter)shooters.get(firer))) {
 ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize());
 firePropertyChange("fireMissionQueueTime",null,new
Double(thisTimeInQueue));
 parameters.add(new Boolean(true));
 waitDelay("EndFireMission",((Shooter)shooters.get(firer)).
 getServiceTime(thisFireMission),parameters);
 }
 // mission unsuccessful and either the target flees or shooter out of ammo
 else if ((battleFieldData.didFlee())||
 (!((Shooter)shooters.get(firer)).hasRounds())){
 ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize());
 firePropertyChange("fireMissionQueueTime",null,new
Double(thisTimeInQueue));
 parameters.add(new Boolean(false));
 waitDelay("EndFireMission",((Shooter)shooters.get(firer)).
 getServiceTime(thisFireMission),parameters);
 }
 // mission unsucccessful, but target still available and shooter has ammo
 else {
 firePropertyChange("numberMissionRepeats",numberMissionRepeats,
 ++numberMissionRepeats);
 waitDelay("RepeatFireMission",((Shooter)shooters.get(firer)).
 getServiceTime(thisFireMission),parameters);
 }
 }

 public void doRepeatFireMission(Vector theParameters){
 Target thisFireMission = (Target)theParameters.get(0);
 int firer = ((Integer)theParameters.get(1)).intValue();
 double thisTimeInQueue = Schedule.getSimTime() - thisFireMission.getArrivalTime();
 if((((Shooter)shooters.get(firer)).getNumberRounds()<
 thisFireMission.getSalvoSize())&&(((Shooter)shooters.get(firer)).hasRounds())){
 thisFireMission.setSalvoSize(((Shooter)shooters.get(firer)).getNumberRounds());
 }
// Check to see if shooter has enough rounds left to fire the mission
 if (!((Shooter)shooters.get(firer)).hasRounds()){
 firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue));

112

 theParameters.add(new Boolean(false));
 waitDelay("EndFireMission",0.0,theParameters);
 }
 // mission successful
 else if (thisFireMission.isFireMissionSuccessful((Shooter)shooters.get(firer))) {
 ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize());
 firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue));
 theParameters.add(new Boolean(true));
 waitDelay("EndFireMission",((Shooter)shooters.get(firer)).
 getRepeatServiceTime(thisFireMission),theParameters);
 }
 // mission unsuccessful and (target flees or shooter out of ammo)
 else if ((battleFieldData.didFlee())||
 (!((Shooter)shooters.get(firer)).hasRounds())){
 ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize());
 firePropertyChange("fireMissionQueueTime",null,new Double(thisTimeInQueue));
 theParameters.add(new Boolean(false));
 waitDelay("EndFireMission",((Shooter)shooters.get(firer)).
 getRepeatServiceTime(thisFireMission),theParameters);
 }
 // mission unsuccessful and target still available
 else{
 ((Shooter)shooters.get(firer)).decrementRounds(thisFireMission.getSalvoSize());
 waitDelay("RepeatFireMission",((Shooter)shooters.get(firer)).
 getRepeatServiceTime(thisFireMission),theParameters);
 }
 }

 public void doEndFireMission(Vector theParameters){
 Target theFireMission = (Target)theParameters.get(0);
 int firer = ((Integer)theParameters.get(1)).intValue();
 boolean success = ((Boolean)theParameters.get(2)).booleanValue();
 double timeInSystem = Schedule.getSimTime()-theFireMission.getArrivalTime();
 ((LinkedList)queue.get(firer)).removeFirst();
 if (success){
 firePropertyChange("numberSuccessfulMissions",numberSuccessfulMissions,
 ++numberSuccessfulMissions);
 }
 else{
 firePropertyChange("numberUnsuccessfulMissions",numberUnsuccessfulMissions,
 ++numberUnsuccessfulMissions);
 }
 firePropertyChange("totalFireMissionTime",null,new Double(timeInSystem));
 firePropertyChange("numberMissionsFired",numberFireMissionsServed,
 ++numberFireMissionsServed);
 firePropertyChange("numberAvailableShooters",numberAvailableShooters,
 ++numberAvailableShooters);
 if (((LinkedList)queue.get(firer)).size() > 0){
 waitDelay("FireMission",0.0,new Integer(firer));
 }
 }

 public void doFireMissionNeverFired(Vector theParameters){
 Target theFireMission = (Target)theParameters.get(0);
 int firer = ((Integer)theParameters.get(1)).intValue();
 for(int i=0;i<((LinkedList)queue.get(firer)).size();i++){
 firePropertyChange("numberMissionsRejected",numberMissionsRejected,
 ++numberMissionsRejected);
 }
 ((LinkedList)queue.get(firer)).clear();
 }

 public int getNumberShooters(){return maxNumberShooters;}

 public void setNumberShooters(int numberShooters){
 maxNumberShooters = numberShooters;
 }

 public int getNumberServed(){return numberFireMissionsServed;}

 public int getNumberInQueue(){return queueSize;}

113

 public void addShooter(Shooter newShooter){
 shooters.add(newShooter);
 queue.add(new LinkedList());
 firePropertyChange("numberAvailableShooters",numberAvailableShooters,
 ++numberAvailableShooters);
 maxNumberShooters++;
 }

 public void removeShooter(int shooterNumber){
 int numberMissions = ((LinkedList)queue.get(shooterNumber)).size();
 for(int i=0;i<numberMissions;i++){
 // add the old targets
 }
 shooters.remove(shooterNumber);
 queue.remove(shooterNumber);
 firePropertyChange("numberAvailableShooters",numberAvailableShooters,
 --numberAvailableShooters);
 maxNumberShooters--;
 }

 public int getShooter(Vector inRangeShooters, Target thisFireMission){
 int firer = 0;
 int temp;
 Shooter thisShooter;
 Shooter bestShooterSoFar;
 double thisShooterDistance;
 double bestShooterSoFarDistance;
 Vector inRangeFA = new Vector();
 Vector inRangeNSFS = new Vector();
 // create vector of inRange shooters that have enough ammo and are FA
 for(int i=0;i<inRangeShooters.size();i++){
 temp = ((Integer)inRangeShooters.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 if (thisShooter.getPlatformType().equals("FieldArtillery")&&
 (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize())){
 inRangeFA.add(new Integer(temp));
 }
 if(thisShooter.getPlatformType().equals("NSFS")&&
 (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize())){
 inRangeNSFS.add(new Integer(temp));
 }
 }
 // Use the FA assets first
 if (inRangeFA.size()>0){
 firer = ((Integer)inRangeFA.get(0)).intValue();
 for(int i=0;i<inRangeFA.size();i++){
 temp = ((Integer)inRangeFA.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 thisShooterDistance = (thisShooter.getShooterLocation()).
 distanceFrom(thisFireMission.getTargetLocation());
 bestShooterSoFar = (Shooter)shooters.get(firer);
 bestShooterSoFarDistance = (bestShooterSoFar.getShooterLocation()).
 distanceFrom(thisFireMission.getTargetLocation());
 // use asset enough rounds and with shortest queue
 if ((((LinkedList)queue.get(temp)).size()<=
 ((LinkedList)queue.get(firer)).size())){
 firer = temp;
 }
 // use asset with lowest PER if all else is the same
 else if((((LinkedList)queue.get(temp)).size()==
 ((LinkedList)queue.get(firer)).size())&&
 (thisShooter.getPER()<bestShooterSoFar.getPER())){
 firer = temp;
 }
 // use asset that is closest if all else is the same
 else if((((LinkedList)queue.get(temp)).size()==
 ((LinkedList)queue.get(firer)).size())&&
 (thisShooter.getPER()<bestShooterSoFar.getPER())&&
 (thisShooterDistance<bestShooterSoFarDistance)){
 firer = temp;

114

 }
 }
 return firer;
 }
 // Use the NSFS assets if no FA assets available
 if (inRangeNSFS.size()>0){
 firer = ((Integer)inRangeNSFS.get(0)).intValue();
 for(int i=0;i<inRangeNSFS.size();i++){
 temp = ((Integer)inRangeNSFS.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 thisShooterDistance = (thisShooter.getShooterLocation()).
 distanceFrom(thisFireMission.getTargetLocation());
 bestShooterSoFar = (Shooter)shooters.get(firer);
 bestShooterSoFarDistance = (bestShooterSoFar.getShooterLocation()).
 distanceFrom(thisFireMission.getTargetLocation());
 // use asset enough rounds and with shortest queue
 if ((((LinkedList)queue.get(temp)).size()<=
 ((LinkedList)queue.get(firer)).size())){
 firer = temp;
 }
 // use asset with lowest PER if all else is the same
 else if((((LinkedList)queue.get(temp)).size()==
 ((LinkedList)queue.get(firer)).size())&&
 (thisShooter.getPER()<bestShooterSoFar.getPER())){
 firer = temp;
 }
 // use asset that is closest if all else is the same
 else if((((LinkedList)queue.get(temp)).size()==
 ((LinkedList)queue.get(firer)).size())&&
 (thisShooter.getPER()<bestShooterSoFar.getPER())&&
 (thisShooterDistance<bestShooterSoFarDistance)){
 firer = temp;
 }
 }
 return firer;
 }
 // if no firers have enough ammo, use asset with the most ammo and reset salvoSize
 // to number of rounds available
 firer = -1;
 for(int i=0;i<inRangeShooters.size();i++){
 temp = ((Integer)inRangeShooters.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 if (firer>=0){
 bestShooterSoFar = (Shooter)shooters.get(firer);
 }
 else{
 bestShooterSoFar = (Shooter)shooters.get(temp);
 }
 if ((thisShooter.hasRounds())&&
 (thisShooter.getNumberRounds()>bestShooterSoFar.getNumberRounds())){
 firer = temp;
 thisFireMission.setSalvoSize(thisShooter.getNumberRounds());
 }
 }
 return firer;
 }

 public int getShooter1(Vector inRangeShooters, Target thisFireMission){
 Shooter thisShooter;
 Shooter bestShooterSoFar;
 Vector inRangeWithEnoughAmmo = new Vector();
 Vector inRangeNotEnoughAmmo = new Vector();
 Vector weightedShooters;
 double[] theValues;
 double shooterWorth;
 double bestShooter = 0.0;
 int temp;
 int firer = -1;
 // create vector of inRange shooters that have enough ammo
 for(int i=0;i<inRangeShooters.size();i++){
 temp = ((Integer)inRangeShooters.get(i)).intValue();

115

 thisShooter = (Shooter)shooters.get(temp);
 if (thisShooter.getNumberRounds()>=thisFireMission.getSalvoSize()){
 inRangeWithEnoughAmmo.add(new Integer(temp));
 }
 else{
 inRangeNotEnoughAmmo.add(new Integer(temp));
 }
 }
 if (inRangeWithEnoughAmmo.size()>0){
 weightedShooters = new Vector();
 theValues = getShooterBestWorstValues(inRangeWithEnoughAmmo,thisFireMission);
//{bestRange,worstRange,bestPER,worstPER,bestNumberRounds,worstNumberRounds};
 for(int i=0;i<inRangeWithEnoughAmmo.size();i++){
 temp = ((Integer)inRangeWithEnoughAmmo.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 double range = thisShooter.getShooterLocation().
 distanceFrom(thisFireMission.getTargetLocation());
 double per = thisShooter.getPER();
 int numberRounds = thisShooter.getNumberRounds();
 // shooter worth is function of range, PER, number rounds, and platform type
 shooterWorth = (range-theValues[1])/(theValues[0]-theValues[1])*weights[0]+
 (per-theValues[3])/(theValues[2]-theValues[3])*weights[1]+
 (numberRounds-theValues[5])/(theValues[4]-theValues[5])*weights[2];
 if (thisShooter.getPlatformType().equals("FieldArtillery")){
 shooterWorth += weights[3];
 }
 if (thisShooter.getPlatformType().equals("NSFS")){
 shooterWorth += weights[4];
 }
 weightedShooters.add(new Double(shooterWorth));
 }
 for(int i=0;i<weightedShooters.size();i++){
 shooterWorth = ((Double)weightedShooters.get(i)).doubleValue();
// System.out.println(shooterWorth);
 if (shooterWorth>bestShooter){
 firer = ((Integer)inRangeWithEnoughAmmo.get(i)).intValue();
 bestShooter = shooterWorth;
 }
 }
 return firer;
 }
 else{
 for(int i=0;i<inRangeNotEnoughAmmo.size();i++){
 temp = ((Integer)inRangeShooters.get(i)).intValue();
 thisShooter = (Shooter)shooters.get(temp);
 if (firer>=0){
 bestShooterSoFar = (Shooter)shooters.get(firer);
 }
 else{
 bestShooterSoFar = (Shooter)shooters.get(temp);
 }
 if(thisShooter.getNumberRounds()>bestShooterSoFar.getNumberRounds()){
 firer = temp;
 thisFireMission.setSalvoSize(thisShooter.getNumberRounds());
 }
 }
 return firer;
 }
 }

 public int getNumberRoundsCausingCollateralDamage(){
 return battleFieldData.getNumberCollateralDamageCausingRounds();
 }

 public double[] getShooterBestWorstValues(Vector theShooters, Target theTarget){
 int temp;
 double bestRange = Double.MAX_VALUE;
 double worstRange = 0.0;
 double bestPER = Double.MAX_VALUE;
 double worstPER = 0.0;
 int bestNumberRounds = 0;

116

 int worstNumberRounds = Integer.MAX_VALUE;
 Shooter currentShooter;
 for(int i=0;i<theShooters.size();i++){
 temp = ((Integer)theShooters.get(i)).intValue();
 currentShooter = (Shooter)shooters.get(temp);
 if ((currentShooter.getShooterLocation()).
 distanceFrom(theTarget.getTargetLocation()) > worstRange){
 worstRange = (currentShooter.getShooterLocation()).
 distanceFrom(theTarget.getTargetLocation());
 }
 if ((currentShooter.getShooterLocation()).
 distanceFrom(theTarget.getTargetLocation()) < bestRange){
 bestRange = (currentShooter.getShooterLocation()).
 distanceFrom(theTarget.getTargetLocation());
 }
 if (currentShooter.getPER()>worstPER){
 worstPER = currentShooter.getPER();
 }
 if (currentShooter.getPER()<bestPER){
 bestPER = currentShooter.getPER();
 }
 if (currentShooter.getNumberRounds()>bestNumberRounds){
 bestNumberRounds = currentShooter.getNumberRounds();
 }
 if (currentShooter.getNumberRounds()<worstNumberRounds){
 worstNumberRounds = currentShooter.getNumberRounds();
 }
 }
 if (worstRange==bestRange){
 worstRange+=0.1;
 }
 if (worstPER==bestPER){
 worstPER+=0.1;
 }
 if (worstNumberRounds==bestNumberRounds){
 worstNumberRounds-=0.1;
 }
 return new double[]{bestRange,worstRange,bestPER,
 worstPER,bestNumberRounds,worstNumberRounds};
 }

 public void reset(){
 super.reset();
 numberMissionRepeats = 0;
 firePropertyChange("numberMissionRepeats",Integer.MIN_VALUE,numberMissionRepeats);
 numberFireMissionsServed = 0;

 firePropertyChange("numberMissionsFired",Integer.MIN_VALUE,numberFireMissionsServe
d);
 numberUnsuccessfulMissions = 0;
 firePropertyChange("numberUnsuccessfulMissions",Integer.MIN_VALUE,
 numberUnsuccessfulMissions);
 numberSuccessfulMissions = 0;
 firePropertyChange("numberSuccessfulMissions",Integer.MIN_VALUE,
 numberSuccessfulMissions);
 numberMissionsRejected = 0;
 firePropertyChange("numberMissionsRejected",Integer.MIN_VALUE,
 numberMissionsRejected);
 numberAvailableShooters = maxNumberShooters;
 firePropertyChange("numberAvailableShooters",Integer.MIN_VALUE,
 numberAvailableShooters);
 queue.clear();
 for(int i=0;i<shooters.size();i++){
 queue.add(new LinkedList());
 }
 firePropertyChange("tgtsInQueue",Integer.MIN_VALUE,queue.size());
 firePropertyChange("fireMissionQueueTime",null,new Double(0.0));
 firePropertyChange("totalFireMissionTime",null,new Double(0.0));
 battleFieldData.resetCollateralDamageCausingRounds();
 }
}

117

B. MAIN METHODS

1. FSST50Replications.java

/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 19, 2001
 *
 * <P>
 *
**/

package fsst;
import simkit.*;
import simkit.data.*;
import simkit.smd.*;
import java.util.*;
import java.io.*;
import java.text.DecimalFormat;

public class FSST50Replications{

// main method
 public static final int NUMREPLICATIONS = 50;
 public static void main(String[] args){
 DecimalFormat deci = new DecimalFormat(" 0.0000;-0.0000");
 Properties props = new Properties();
 try {
 props.load(new FileInputStream(args[0]));
 }
 catch (FileNotFoundException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}

 // get COA data and CA
 String theCOA = props.get("COA").toString();
 double ca = Double.parseDouble(props.get("theCA").toString());
 // get AO data
 double xLowerLeft = Double.parseDouble(props.get("xLowerLeft").toString());
 double yLowerLeft = Double.parseDouble(props.get("yLowerLeft").toString());
 double xUpperRight = Double.parseDouble(props.get("xUpperRight").toString());
 double yUpperRight= Double.parseDouble(props.get("yUpperRight").toString());
 String xDist = props.get("xDist").toString();
 double xDistA = Double.parseDouble(props.get("xDistA").toString());
 double xDistB = Double.parseDouble(props.get("xDistB").toString());
 String yDist = props.get("yDist").toString();
 double yDistMean = Double.parseDouble(props.get("yDistMean").toString());

 // instantiate AO
 Coordinate lowerLeft = new Coordinate(xLowerLeft,yLowerLeft);
 Coordinate upperRight = new Coordinate(xUpperRight,yUpperRight);
 Object[] xDistParameters = new Object[]{new Double(xDistA),new Double(xDistB)};
 Object[] yDistParameters = new Object[]{new Double(yDistMean)};
 AO box = new AO(lowerLeft,upperRight,xDist,xDistParameters,yDist,yDistParameters);

 // get the stop data
 String stopEvent = props.get("stopEvent").toString();
 int stopEventCount = Integer.parseInt(props.get("stopEventCount").toString());

 // get the ArrivalProcess data
 String interarrivalDistribution = props.get("arrivalDistribution").toString();
 double meanInterarrivalTime =
 Double.parseDouble(props.get("meanInterarrival").toString());
 int arrivalStream = Integer.parseInt(props.get("arrivalStream").toString());

 // instantiate the arrivalProcess
 TgtArrivalProcess arrival = new TgtArrivalProcess(interarrivalDistribution,

118

 new Object[] {new
Double(meanInterarrivalTime)},RandomStream.STREAM[arrivalStream]);

 // get the Shooter data
 int numberShooters = Integer.parseInt(props.get("numberShooters").toString());
 double meanProjectileVelocity =
 Double.parseDouble(props.get("meanProjectileVelocity").toString());
 String[] platformType = new String[numberShooters];
 String[] acquireServiceDistribution = new String[numberShooters];
 double[] meanAcquireInterservice = new double[numberShooters];
 double[] sigmaAcquire = new double[numberShooters];
 String[] firingServiceDistribution = new String[numberShooters];
 double[] meanFiringInterservice = new double[numberShooters];
 double[] sigmaFiring = new double[numberShooters];
 double[] maxRateOfFire = new double[numberShooters];
 double[] thePER = new double[numberShooters];
 double[] thePED = new double[numberShooters];
 double[] shooterXCoord = new double[numberShooters];
 double[] shooterYCoord = new double[numberShooters];
 int[] acquireServerStream = new int[numberShooters];
 int[] firingServerStream = new int[numberShooters];
 int[] numberRounds = new int[numberShooters];
 int[] numberGuns = new int[numberShooters];
 int[] shooterRange = new int[numberShooters];
 int[] burstRadius = new int[numberShooters];
 Shooter[] aShooter = new Shooter[numberShooters];

 for(int i=0;i<numberShooters;i++){
 platformType[i] = props.get("platformType"+(i+1)).toString();
 acquireServiceDistribution[i] =
 props.get("acquireServiceDistribution"+(i+1)).toString();
 meanAcquireInterservice[i] =
 Double.parseDouble(props.get("meanAcquireInterservice"+(i+1)).toString());
 sigmaAcquire[i] = Double.parseDouble(props.get("sigmaAcquire"+(i+1)).toString());
 firingServiceDistribution[i] =
 props.get("firingServiceDistribution"+(i+1)).toString();
 meanFiringInterservice[i] =
 Double.parseDouble(props.get("meanFiringInterservice"+(i+1)).toString());
 sigmaFiring[i] = Double.parseDouble(props.get("sigmaFiring"+(i+1)).toString());
 maxRateOfFire[i] =
 Double.parseDouble(props.get("maxRateOfFire"+(i+1)).toString());
 thePER[i] = Double.parseDouble(props.get("thePER"+(i+1)).toString());
 thePED[i] = Double.parseDouble(props.get("thePED"+(i+1)).toString());
 shooterXCoord[i] =
Double.parseDouble(props.get("shooterXCoord"+(i+1)).toString());
 shooterYCoord[i] =
Double.parseDouble(props.get("shooterYCoord"+(i+1)).toString());
 acquireServerStream[i] =
 Integer.parseInt(props.get("acquireServerStream"+(i+1)).toString());
 firingServerStream[i] =
 Integer.parseInt(props.get("firingServerStream"+(i+1)).toString());
 numberRounds[i] = Integer.parseInt(props.get("numberRounds"+(i+1)).toString());
 numberGuns[i] = Integer.parseInt(props.get("numberGuns"+(i+1)).toString());
 shooterRange[i] = Integer.parseInt(props.get("shooterRange"+(i+1)).toString());
 burstRadius[i] = Integer.parseInt(props.get("burstRadius"+(i+1)).toString());
 // instantiate the shooters
 aShooter[i] = new Shooter(new Coordinate(shooterXCoord[i],shooterYCoord[i]),
 shooterRange[i],thePER[i],thePED[i],acquireServiceDistribution[i],
 new Object[] {new Double(meanAcquireInterservice[i]),
 new Double(sigmaAcquire[i])},firingServiceDistribution[i],new Object[]
 {new Double(meanFiringInterservice[i]),new Double(sigmaFiring[i])},
 maxRateOfFire[i],RandomStream.STREAM[firingServerStream[i]],
 RandomStream.STREAM[acquireServerStream[i]],numberRounds[i],
 burstRadius[i],meanProjectileVelocity, platformType[i],numberGuns[i]);
 }

 // instantiate the BattleFieldData
 double fleeProbability =
Double.parseDouble(props.get("fleeProbability").toString());
 int fleeStream = Integer.parseInt(props.get("fleeStream").toString());
 double collateralDamageRadius =

119

 Double.parseDouble(props.get("collateralDamageRadius").toString());
 double collateralDamagePercent =
 Double.parseDouble(props.get("collateralDamagePercent").toString());
 double percentArmor =
 Double.parseDouble(props.get("percentArmor").toString());
 double percentInfantryInOpen =
 Double.parseDouble(props.get("percentInfantryInOpen").toString());
 double percentInfantryDugIn =
 Double.parseDouble(props.get("percentInfantryDugIn").toString());
 double percentArmoredPC =
 Double.parseDouble(props.get("percentArmoredPC").toString());
 double percentLightSkinVehicle =
 Double.parseDouble(props.get("percentLightSkinVehicle").toString());

 int destroyArmor = Integer.parseInt(props.get("destroyArmor").toString());
 int destroyArmorSalvo =
Integer.parseInt(props.get("destroyArmorSalvo").toString());
 int neutralizeArmor = Integer.parseInt(props.get("neutralizeArmor").toString());
 int neutralizeArmorSalvo =
Integer.parseInt(props.get("neutralizeArmorSalvo").toString());
 int suppressArmor = Integer.parseInt(props.get("suppressArmor").toString());
 int suppressArmorSalvo =
Integer.parseInt(props.get("suppressArmorSalvo").toString());

 int destroyIIO = Integer.parseInt(props.get("destroyIIO").toString());
 int destroyIIOSalvo = Integer.parseInt(props.get("destroyIIOSalvo").toString());
 int neutralizeIIO = Integer.parseInt(props.get("neutralizeIIO").toString());
 int neutralizeIIOSalvo =
Integer.parseInt(props.get("neutralizeIIOSalvo").toString());
 int suppressIIO = Integer.parseInt(props.get("suppressIIO").toString());
 int suppressIIOSalvo = Integer.parseInt(props.get("suppressIIOSalvo").toString());

 int destroyIDI = Integer.parseInt(props.get("destroyIDI").toString());
 int destroyIDISalvo = Integer.parseInt(props.get("destroyIDISalvo").toString());
 int neutralizeIDI = Integer.parseInt(props.get("neutralizeIDI").toString());
 int neutralizeIDISalvo =
Integer.parseInt(props.get("neutralizeIDISalvo").toString());
 int suppressIDI = Integer.parseInt(props.get("suppressIDI").toString());
 int suppressIDISalvo = Integer.parseInt(props.get("suppressIDISalvo").toString());

 int destroyAPC = Integer.parseInt(props.get("destroyAPC").toString());
 int destroyAPCSalvo = Integer.parseInt(props.get("destroyAPCSalvo").toString());
 int neutralizeAPC = Integer.parseInt(props.get("neutralizeAPC").toString());
 int neutralizeAPCSalvo =
Integer.parseInt(props.get("neutralizeAPCSalvo").toString());
 int suppressAPC = Integer.parseInt(props.get("suppressAPC").toString());
 int suppressAPCSalvo = Integer.parseInt(props.get("suppressAPCSalvo").toString());

 int destroyLSV = Integer.parseInt(props.get("destroyLSV").toString());
 int destroyLSVSalvo = Integer.parseInt(props.get("destroyLSVSalvo").toString());
 int neutralizeLSV = Integer.parseInt(props.get("neutralizeLSV").toString());
 int neutralizeLSVSalvo =
Integer.parseInt(props.get("neutralizeLSVSalvo").toString());
 int suppressLSV = Integer.parseInt(props.get("suppressLSV").toString());
 int suppressLSVSalvo = Integer.parseInt(props.get("suppressLSVSalvo").toString());

 double percentDestroy = Double.parseDouble(props.get("percentDestroy").toString());
 double percentNeutralize =
Double.parseDouble(props.get("percentNeutralize").toString());
 double percentSuppress =
Double.parseDouble(props.get("percentSuppress").toString());

 // load BattleFieldData and shooters, instantiate the server
 BattleFieldData battleFieldData = new BattleFieldData(percentArmor,destroyArmor,
 destroyArmorSalvo,neutralizeArmor,neutralizeArmorSalvo,suppressArmor,

suppressArmorSalvo,percentInfantryInOpen,destroyIIO,destroyIIOSalvo,neutralizeIIO,
 neutralizeIIOSalvo,suppressIIO,suppressIIOSalvo,percentInfantryDugIn,destroyIDI,
 destroyIDISalvo,neutralizeIDI,neutralizeIDISalvo,suppressIDI,suppressIDISalvo,
 percentArmoredPC,destroyAPC,destroyAPCSalvo,neutralizeAPC,neutralizeAPCSalvo,
 suppressAPC,suppressAPCSalvo,percentLightSkinVehicle,destroyLSV,destroyLSVSalvo,

120

 neutralizeLSV,neutralizeLSVSalvo,suppressLSV,suppressLSVSalvo,percentDestroy,
 percentNeutralize,percentSuppress,fleeProbability,
 RandomStream.STREAM[fleeStream],collateralDamageRadius,collateralDamagePercent);

 Vector theShooters = new Vector();
 for(int i=0;i<numberShooters;i++){
 theShooters.add(aShooter[i]);
 }

 double[] theWeights = new double[5];
 theWeights[0] = Double.parseDouble(props.get("range").toString());
 theWeights[1] = Double.parseDouble(props.get("thePER").toString());
 theWeights[2] = Double.parseDouble(props.get("numberRounds").toString());
 theWeights[3] = Double.parseDouble(props.get("FieldArtillery").toString());
 theWeights[4] = Double.parseDouble(props.get("NSFS").toString());

 TgtServer2 server = new TgtServer2(theShooters,box,battleFieldData,theWeights);

 SimpleStats fireMissionQueueTimeStat =
 new SimpleStats("fireMissionQueueTime",SamplingType.TALLY);
 SimpleStats totalFireMissionTimeStat =
 new SimpleStats("totalFireMissionTime",SamplingType.TALLY);
 SimpleStats tgtsInQueueStat =
 new SimpleStats("tgtsInQueue",SamplingType.TIME_VARYING);
 SimpleStats nasStat =
 new SimpleStats("numberAvailableShooters",SamplingType.TIME_VARYING);
 SimpleStats numberRepeatMissionsStat =
 new SimpleStats("numberMissionRepeats",SamplingType.TIME_VARYING);
 SimpleStats numberMissionsFiredStat =
 new SimpleStats("numberMissionsFired",SamplingType.TIME_VARYING);
 SimpleStats numberUnsuccessfulMissionsStat =
 new SimpleStats("numberUnsuccessfulMissions",SamplingType.TIME_VARYING);
 SimpleStats numberSuccessfulMissionsStat =
 new SimpleStats("numberSuccessfulMissions",SamplingType.TIME_VARYING);
 SimpleStats numberMissionsRejectedStat =
 new SimpleStats("numberMissionsRejected",SamplingType.TIME_VARYING);

 server.addPropertyChangeListener(fireMissionQueueTimeStat);
 server.addPropertyChangeListener(totalFireMissionTimeStat);
 server.addPropertyChangeListener(tgtsInQueueStat);
 server.addPropertyChangeListener(nasStat);
 server.addPropertyChangeListener(numberRepeatMissionsStat);
 server.addPropertyChangeListener(numberMissionsFiredStat);
 server.addPropertyChangeListener(numberUnsuccessfulMissionsStat);
 server.addPropertyChangeListener(numberSuccessfulMissionsStat);
 server.addPropertyChangeListener(numberMissionsRejectedStat);

 arrival.addSimEventListener(server);
 Schedule.stopOnEvent(stopEvent,stopEventCount);
 Schedule.setVerbose(false);
// FMT = Avg FM time
// NAS = Number available shooters
// PF = Percentage of missions fired
// TPS = Total percent of missions successful
// PS = Of missions fired, the percent of missions successful
// CD = Number of rds with collateral damage
// CA = percentage of area covered
// COA = the coa designator
 System.out.println(" FMT\t NAS\t PF\t TPS\t PS\t CD\t CA\t COA");
 for (int i=0;i<NUMREPLICATIONS;i++){
 Schedule.reset();
 fireMissionQueueTimeStat.reset();
 totalFireMissionTimeStat.reset();
 tgtsInQueueStat.reset();
 nasStat.reset();
 numberRepeatMissionsStat.reset();
 numberMissionsFiredStat.reset();
 numberUnsuccessfulMissionsStat.reset();
 numberSuccessfulMissionsStat.reset();
 numberMissionsRejectedStat.reset();
 Schedule.reset();

121

 Schedule.startSimulation();
 double fmt = totalFireMissionTimeStat.getMean();
 double nas = nasStat.getMean();
 double pf = (double)(arrival.getNumberArrivals()-
 numberMissionsRejectedStat.getCount())/arrival.getNumberArrivals();
 double tps = (double)numberSuccessfulMissionsStat.getCount()/
 (numberMissionsFiredStat.getCount()+numberMissionsRejectedStat.getCount());
 double ps = (double)numberSuccessfulMissionsStat.getCount()/
 numberMissionsFiredStat.getCount();
 int cd = server.getNumberRoundsCausingCollateralDamage();
 System.out.println(deci.format(fmt) + "\t" + deci.format(nas) + "\t" +
 deci.format(pf) + "\t" + deci.format(tps) + "\t" + deci.format(ps) + "\t " +
 cd + "\t" + deci.format(ca) + "\t " + theCOA);
 }
 }

}

2. FSSTGetCA.java

/**
 * Juan K. Ulloa

 * Thesis: FSST
 * January 19, 2001
 *
 * <P>
 *
**/

package fsst;
import simkit.*;
import simkit.data.*;
import simkit.smd.*;
import java.util.*;
import java.io.*;
import java.text.DecimalFormat;

public class FSSTGetCA{

// main method
 public static void main(String[] args){
 DecimalFormat deci = new DecimalFormat(" 0.0000;-0.0000");
 Properties props = new Properties();
 try {
 props.load(new FileInputStream(args[0]));
 }
 catch (FileNotFoundException e) {System.err.println(e);}
 catch (IOException e) {System.err.println(e);}

 // get COA data
 String theCOA = props.get("COA").toString();

 // get AO data
 double xLowerLeft = Double.parseDouble(props.get("xLowerLeft").toString());
 double yLowerLeft = Double.parseDouble(props.get("yLowerLeft").toString());
 double xUpperRight = Double.parseDouble(props.get("xUpperRight").toString());
 double yUpperRight= Double.parseDouble(props.get("yUpperRight").toString());
 String xDist = props.get("xDist").toString();
 double xDistA = Double.parseDouble(props.get("xDistA").toString());
 double xDistB = Double.parseDouble(props.get("xDistB").toString());
// String yDist = props.get("yDist").toString();
// double yDistMean = Double.parseDouble(props.get("yDistMean").toString());
 String yDist = props.get("yDist1").toString();
 double yDistA = Double.parseDouble(props.get("yDistA").toString());
 double yDistB = Double.parseDouble(props.get("yDistB").toString());

 // instantiate AO
 Coordinate lowerLeft = new Coordinate(xLowerLeft,yLowerLeft);
 Coordinate upperRight = new Coordinate(xUpperRight,yUpperRight);

122

 Object[] xDistParameters = new Object[]{new Double(xDistA),new Double(xDistB)};
// Object[] yDistParameters = new Object[]{new Double(yDistMean)};
 Object[] yDistParameters = new Object[]{new Double(yDistA), new Double(yDistB)};
 AO box = new AO(lowerLeft,upperRight,xDist,xDistParameters,yDist,yDistParameters);

 // get the stop data
 String stopEvent = props.get("stopEvent").toString();
 int stopEventCount = Integer.parseInt(props.get("stopEventCount").toString());

 // get the ArrivalProcess data
 String interarrivalDistribution = props.get("arrivalDistribution").toString();
 double meanInterarrivalTime =
 Double.parseDouble(props.get("meanInterarrival").toString());
 int arrivalStream = Integer.parseInt(props.get("arrivalStream").toString());

 // instantiate the arrivalProcess
 TgtArrivalProcess arrival = new TgtArrivalProcess(interarrivalDistribution,
 new Object[] {new
Double(meanInterarrivalTime)},RandomStream.STREAM[arrivalStream]);

 // get the Shooter data
 int numberShooters = Integer.parseInt(props.get("numberShooters").toString());
 double meanProjectileVelocity =
 Double.parseDouble(props.get("meanProjectileVelocity").toString());
 String[] platformType = new String[numberShooters];
 String[] acquireServiceDistribution = new String[numberShooters];
 double[] meanAcquireInterservice = new double[numberShooters];
 double[] sigmaAcquire = new double[numberShooters];
 String[] firingServiceDistribution = new String[numberShooters];
 double[] meanFiringInterservice = new double[numberShooters];
 double[] sigmaFiring = new double[numberShooters];
 double[] maxRateOfFire = new double[numberShooters];
 double[] thePER = new double[numberShooters];
 double[] thePED = new double[numberShooters];
 double[] shooterXCoord = new double[numberShooters];
 double[] shooterYCoord = new double[numberShooters];
 int[] acquireServerStream = new int[numberShooters];
 int[] firingServerStream = new int[numberShooters];
 int[] numberRounds = new int[numberShooters];
 int[] numberGuns = new int[numberShooters];
 int[] shooterRange = new int[numberShooters];
 int[] burstRadius = new int[numberShooters];
 Shooter[] aShooter = new Shooter[numberShooters];

 for(int i=0;i<numberShooters;i++){
 platformType[i] = props.get("platformType"+(i+1)).toString();
 acquireServiceDistribution[i] =
 props.get("acquireServiceDistribution"+(i+1)).toString();
 meanAcquireInterservice[i] =
 Double.parseDouble(props.get("meanAcquireInterservice"+(i+1)).toString());
 sigmaAcquire[i] = Double.parseDouble(props.get("sigmaAcquire"+(i+1)).toString());
 firingServiceDistribution[i] =
 props.get("firingServiceDistribution"+(i+1)).toString();
 meanFiringInterservice[i] =
 Double.parseDouble(props.get("meanFiringInterservice"+(i+1)).toString());
 sigmaFiring[i] = Double.parseDouble(props.get("sigmaFiring"+(i+1)).toString());
 maxRateOfFire[i] =
 Double.parseDouble(props.get("maxRateOfFire"+(i+1)).toString());
 thePER[i] = Double.parseDouble(props.get("thePER"+(i+1)).toString());
 thePED[i] = Double.parseDouble(props.get("thePED"+(i+1)).toString());
 shooterXCoord[i] =
Double.parseDouble(props.get("shooterXCoord"+(i+1)).toString());
 shooterYCoord[i] =
Double.parseDouble(props.get("shooterYCoord"+(i+1)).toString());
 acquireServerStream[i] =
 Integer.parseInt(props.get("acquireServerStream"+(i+1)).toString());
 firingServerStream[i] =
 Integer.parseInt(props.get("firingServerStream"+(i+1)).toString());
 numberRounds[i] = Integer.parseInt(props.get("numberRounds"+(i+1)).toString());
 numberGuns[i] = Integer.parseInt(props.get("numberGuns"+(i+1)).toString());
 shooterRange[i] = Integer.parseInt(props.get("shooterRange"+(i+1)).toString());

123

 burstRadius[i] = Integer.parseInt(props.get("burstRadius"+(i+1)).toString());
 // instantiate the shooters
 aShooter[i] = new Shooter(new Coordinate(shooterXCoord[i],shooterYCoord[i]),
 shooterRange[i],thePER[i],thePED[i],acquireServiceDistribution[i],
 new Object[] {new Double(meanAcquireInterservice[i]),
 new Double(sigmaAcquire[i])},firingServiceDistribution[i],new Object[]
 {new Double(meanFiringInterservice[i]),new Double(sigmaFiring[i])},
 maxRateOfFire[i],RandomStream.STREAM[firingServerStream[i]],
 RandomStream.STREAM[acquireServerStream[i]],numberRounds[i],
 burstRadius[i],meanProjectileVelocity, platformType[i],numberGuns[i]);
 }

 // instantiate the BattleFieldData
 double fleeProbability =
Double.parseDouble(props.get("fleeProbability").toString());
 int fleeStream = Integer.parseInt(props.get("fleeStream").toString());
 double collateralDamageRadius =
 Double.parseDouble(props.get("collateralDamageRadius").toString());
 double collateralDamagePercent =
 Double.parseDouble(props.get("collateralDamagePercent").toString());
 double percentArmor =
 Double.parseDouble(props.get("percentArmor").toString());
 double percentInfantryInOpen =
 Double.parseDouble(props.get("percentInfantryInOpen").toString());
 double percentInfantryDugIn =
 Double.parseDouble(props.get("percentInfantryDugIn").toString());
 double percentArmoredPC =
 Double.parseDouble(props.get("percentArmoredPC").toString());
 double percentLightSkinVehicle =
 Double.parseDouble(props.get("percentLightSkinVehicle").toString());

 int destroyArmor = Integer.parseInt(props.get("destroyArmor").toString());
 int destroyArmorSalvo =
Integer.parseInt(props.get("destroyArmorSalvo").toString());
 int neutralizeArmor = Integer.parseInt(props.get("neutralizeArmor").toString());
 int neutralizeArmorSalvo =
Integer.parseInt(props.get("neutralizeArmorSalvo").toString());
 int suppressArmor = Integer.parseInt(props.get("suppressArmor").toString());
 int suppressArmorSalvo =
Integer.parseInt(props.get("suppressArmorSalvo").toString());

 int destroyIIO = Integer.parseInt(props.get("destroyIIO").toString());
 int destroyIIOSalvo = Integer.parseInt(props.get("destroyIIOSalvo").toString());
 int neutralizeIIO = Integer.parseInt(props.get("neutralizeIIO").toString());
 int neutralizeIIOSalvo =
Integer.parseInt(props.get("neutralizeIIOSalvo").toString());
 int suppressIIO = Integer.parseInt(props.get("suppressIIO").toString());
 int suppressIIOSalvo = Integer.parseInt(props.get("suppressIIOSalvo").toString());

 int destroyIDI = Integer.parseInt(props.get("destroyIDI").toString());
 int destroyIDISalvo = Integer.parseInt(props.get("destroyIDISalvo").toString());
 int neutralizeIDI = Integer.parseInt(props.get("neutralizeIDI").toString());
 int neutralizeIDISalvo =
Integer.parseInt(props.get("neutralizeIDISalvo").toString());
 int suppressIDI = Integer.parseInt(props.get("suppressIDI").toString());
 int suppressIDISalvo = Integer.parseInt(props.get("suppressIDISalvo").toString());

 int destroyAPC = Integer.parseInt(props.get("destroyAPC").toString());
 int destroyAPCSalvo = Integer.parseInt(props.get("destroyAPCSalvo").toString());
 int neutralizeAPC = Integer.parseInt(props.get("neutralizeAPC").toString());
 int neutralizeAPCSalvo =
Integer.parseInt(props.get("neutralizeAPCSalvo").toString());
 int suppressAPC = Integer.parseInt(props.get("suppressAPC").toString());
 int suppressAPCSalvo = Integer.parseInt(props.get("suppressAPCSalvo").toString());

 int destroyLSV = Integer.parseInt(props.get("destroyLSV").toString());
 int destroyLSVSalvo = Integer.parseInt(props.get("destroyLSVSalvo").toString());
 int neutralizeLSV = Integer.parseInt(props.get("neutralizeLSV").toString());
 int neutralizeLSVSalvo =
Integer.parseInt(props.get("neutralizeLSVSalvo").toString());
 int suppressLSV = Integer.parseInt(props.get("suppressLSV").toString());

124

 int suppressLSVSalvo = Integer.parseInt(props.get("suppressLSVSalvo").toString());

 double percentDestroy = Double.parseDouble(props.get("percentDestroy").toString());
 double percentNeutralize =
Double.parseDouble(props.get("percentNeutralize").toString());
 double percentSuppress =
Double.parseDouble(props.get("percentSuppress").toString());

 // load BattleFieldData and shooters, instantiate the server
 BattleFieldData battleFieldData = new BattleFieldData(percentArmor,destroyArmor,
 destroyArmorSalvo,neutralizeArmor,neutralizeArmorSalvo,suppressArmor,

suppressArmorSalvo,percentInfantryInOpen,destroyIIO,destroyIIOSalvo,neutralizeIIO,
 neutralizeIIOSalvo,suppressIIO,suppressIIOSalvo,percentInfantryDugIn,destroyIDI,
 destroyIDISalvo,neutralizeIDI,neutralizeIDISalvo,suppressIDI,suppressIDISalvo,
 percentArmoredPC,destroyAPC,destroyAPCSalvo,neutralizeAPC,neutralizeAPCSalvo,
 suppressAPC,suppressAPCSalvo,percentLightSkinVehicle,destroyLSV,destroyLSVSalvo,
 neutralizeLSV,neutralizeLSVSalvo,suppressLSV,suppressLSVSalvo,percentDestroy,
 percentNeutralize,percentSuppress,fleeProbability,
 RandomStream.STREAM[fleeStream],collateralDamageRadius,collateralDamagePercent);

 Vector theShooters = new Vector();
 for(int i=0;i<numberShooters;i++){
 theShooters.add(aShooter[i]);
 }

 double[] theWeights = new double[5];
 theWeights[0] = Double.parseDouble(props.get("range").toString());
 theWeights[1] = Double.parseDouble(props.get("thePER").toString());
 theWeights[2] = Double.parseDouble(props.get("numberRounds").toString());
 theWeights[3] = Double.parseDouble(props.get("FieldArtillery").toString());
 theWeights[4] = Double.parseDouble(props.get("NSFS").toString());

 TgtServer2 server = new TgtServer2(theShooters,box,battleFieldData,theWeights);

 SimpleStats numberMissionsFiredStat =
 new SimpleStats("numberMissionsFired",SamplingType.TIME_VARYING);
 SimpleStats numberMissionsRejectedStat =
 new SimpleStats("numberMissionsRejected",SamplingType.TIME_VARYING);

 server.addPropertyChangeListener(numberMissionsFiredStat);
 server.addPropertyChangeListener(numberMissionsRejectedStat);

 arrival.addSimEventListener(server);
 Schedule.stopOnEvent(stopEvent,stopEventCount);
 Schedule.setVerbose(false);
// theCA = percentage of area covered
 Schedule.reset();
 numberMissionsFiredStat.reset();
 numberMissionsRejectedStat.reset();
 Schedule.reset();
 Schedule.startSimulation();
 double theCA = (double)numberMissionsFiredStat.getCount()/
 (numberMissionsFiredStat.getCount()+numberMissionsRejectedStat.getCount());
 System.out.println("The COA = " + theCOA + "\nThe CA = " + deci.format(theCA));

 for(int i=0;i<numberShooters;i++){
 System.out.println(aShooter[i].toString());
 }
 }

}

125

C. PROPERTIES FILE EXAMPLES

1. IBCT: Army with Reinforcing NSFS

Fire Support Simulation Tool
12 January 2001

File: fsst1.properties
Properties file for Multiple Server Queueing Model with Reneging

The COA Designator

COA = 1D
theCA = 1.0

The AO properties
xLowerLeft = 0.0
yLowerLeft = 0.0
xUpperRight = 24000.0
yUpperRight = 70000.0
xDist = Uniform
xDistA = 0.0
xDistB = 24000.0
yDist = Exponential
yDistMean = 50000
yDist1 = Uniform
yDistA = 0.0
yDistB = 70000.0

ArrivalProcess properties
arrivalDistribution = Exponential
meanInterarrival = 2.5
arrivalStream = 1

BattleFieldData
fleeProbability = 0.9
fleeStream = 2
collateralDamageRadius = 400
collateralDamagePercent = 0.01

 # Probability of Target Type being:
percentArmor = 0.4
percentInfantryInOpen = 0.1
percentInfantryDugIn = 0.0
percentArmoredPC = 0.3
percentLightSkinVehicle = 0.2

 # Number of Rounds within Burst Radius of Target to Destroy:
destroyArmor = 18
destroyIIO = 3
destroyIDI = 6
destroyAPC = 12
destroyLSV = 9

 # Number of Rounds within Burst Radius of Target to Neutralize:
neutralizeArmor = 12
neutralizeIIO = 2
neutralizeIDI = 4
neutralizeAPC = 9
neutralizeLSV = 6

 # Number of Rounds within 2 * (Burst Radius) of Target to Suppress:
suppressArmor = 1
suppressIIO = 1
suppressIDI = 1
suppressAPC = 1

126

suppressLSV = 1

 # Number of rounds to fire in a salvo against specific targets:
destroyArmorSalvo = 36
neutralizeArmorSalvo = 24
suppressArmorSalvo = 3

destroyIIOSalvo = 6
neutralizeIIOSalvo = 3
suppressIIOSalvo = 3

destroyIDISalvo = 24
neutralizeIDISalvo = 9
suppressIDISalvo = 3

destroyAPCSalvo = 24
neutralizeAPCSalvo = 18
suppressAPCSalvo = 3

destroyLSVSalvo = 18
neutralizeLSVSalvo = 12
suppressLSVSalvo = 3

 # Probability of mission being:
percentDestroy = 0.3
percentNeutralize = 0.5
percentSuppress = 0.2

Shooter properties
 # projo velocity in x direction in m/min ((mvv*60)/sqrt(2))
meanProjectileVelocity = 70000
numberShooters = 6

Shooter1 properties (Paladin Battery)
platformType1 = FieldArtillery
acquireServiceDistribution1 = Normal
meanAcquireInterservice1 = 4.0
sigmaAcquire1 = 0.75
firingServiceDistribution1 = Normal
meanFiringInterservice1 = 1.0
sigmaFiring1 = 0.2
 # in rounds per minute
maxRateOfFire1 = 8
thePER1 = 35
thePED1 = 2
shooterXCoord1 = 6000.0
shooterYCoord1 = 30000.0
acquireServerStream1 = 3
firingServerStream1 = 4
numberRounds1 = 2520
shooterRange1 = 30000
burstRadius1 = 50
numberGuns1 = 6

Shooter2 properties (Paladin Battery)
platformType2 = FieldArtillery
acquireServiceDistribution2 = Normal
meanAcquireInterservice2 = 4.0
sigmaAcquire2 = 0.75
firingServiceDistribution2 = Normal
meanFiringInterservice2 = 1.0
sigmaFiring2 = 0.2
 # in rounds per minute
maxRateOfFire2 = 8
thePER2 = 35
thePED2 = 2
shooterXCoord2 = 12000.0
shooterYCoord2 = 30000.0
acquireServerStream2 = 5
firingServerStream2 = 6
numberRounds2 = 2520

127

shooterRange2 = 30000
burstRadius2 = 50
numberGuns2 = 6

Shooter3 properties (Paladin Battery)
platformType3 = FieldArtillery
acquireServiceDistribution3 = Normal
meanAcquireInterservice3 = 4.0
sigmaAcquire3 = 0.75
firingServiceDistribution3 = Normal
meanFiringInterservice3 = 1.0
sigmaFiring3 = 0.2
 # in rounds per minute
maxRateOfFire3 = 8
thePER3 = 35
thePED3 = 2
shooterXCoord3 = 18000.0
shooterYCoord3 = 30000.0
acquireServerStream3 = 7
firingServerStream3 = 8
numberRounds3 = 2520
shooterRange3 = 30000
burstRadius3 = 50
numberGuns3 = 6

Shooter4 properties
platformType4 = NSFS
acquireServiceDistribution4 = Normal
meanAcquireInterservice4 = 5.0
sigmaAcquire4 = 1.0
firingServiceDistribution4 = Normal
meanFiringInterservice4 = 0.5
sigmaFiring4 = 0.1
 # in rounds per minute
maxRateOfFire4 = 24
thePER4 = 100
thePED4 = 2
shooterXCoord4 = 6000.0
shooterYCoord4 = -40000.0
acquireServerStream4 = 9
firingServerStream4 = 0
numberRounds4 = 2400
shooterRange4 = 112000
burstRadius4 = 75
numberGuns4 = 2

Shooter5 properties
platformType5 = NSFS
acquireServiceDistribution5 = Normal
meanAcquireInterservice5 = 5.0
sigmaAcquire5 = 1.0
firingServiceDistribution5 = Normal
meanFiringInterservice5 = 0.5
sigmaFiring5 = 0.1
 # in rounds per minute
maxRateOfFire5 = 24
thePER5 = 100
thePED5 = 2
shooterXCoord5 = 12000.0
shooterYCoord5 = -40000.0
acquireServerStream5 = 1
firingServerStream5 = 2
numberRounds5 = 2400
shooterRange5 = 112000
burstRadius5 = 75
numberGuns5 = 2

Shooter6 properties
platformType6 = NSFS
acquireServiceDistribution6 = Normal
meanAcquireInterservice6 = 5.0

128

sigmaAcquire6 = 1.0
firingServiceDistribution6 = Normal
meanFiringInterservice6 = 0.5
sigmaFiring6 = 0.1
 # in rounds per minute
maxRateOfFire6 = 24
thePER6 = 100
thePED6 = 2
shooterXCoord6 = 18000.0
shooterYCoord6 = -40000.0
acquireServerStream6 = 4
firingServerStream6 = 5
numberRounds6 = 2400
shooterRange6 = 112000
burstRadius6 = 75
numberGuns6 = 2

the Weights
range = 0.125
thePER = 0.125
numberRounds = .5
FieldArtillery = 0.25
NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

2. FCS: Army with Reinforcing NSFS

Fire Support Simulation Tool
12 January 2001

File: fsst1.properties
Properties file for Multiple Server Queueing Model with Reneging

The COA Designator

COA = 2D
theCA = 1.0

The AO properties
xLowerLeft = 0.0
yLowerLeft = 0.0
xUpperRight = 50000.0
yUpperRight = 120000.0
xDist = Uniform
xDistA = 0.0
xDistB = 50000.0
yDist = Exponential
yDistMean = 80000
yDist1 = Uniform
yDistA = 0.0
yDistB = 120000.0

ArrivalProcess properties
arrivalDistribution = Exponential
meanInterarrival = 2.5
arrivalStream = 1

BattleFieldData
fleeProbability = 0.9
fleeStream = 2
collateralDamageRadius = 400
collateralDamagePercent = 0.01

Probability of Target Type being:

129

percentArmor = 0.4
percentInfantryInOpen = 0.1
percentInfantryDugIn = 0.0
percentArmoredPC = 0.3
percentLightSkinVehicle = 0.2

 # Number of Rounds within Burst Radius of Target to Destroy:
destroyArmor = 18
destroyIIO = 3
destroyIDI = 6
destroyAPC = 12
destroyLSV = 9

 # Number of Rounds within Burst Radius of Target to Neutralize:
neutralizeArmor = 12
neutralizeIIO = 2
neutralizeIDI = 4
neutralizeAPC = 9
neutralizeLSV = 6

 # Number of Rounds within 2 * (Burst Radius) of Target to Suppress:
suppressArmor = 1
suppressIIO = 1
suppressIDI = 1
suppressAPC = 1
suppressLSV = 1

 # Number of rounds to fire in a salvo against specific targets:
destroyArmorSalvo = 18
neutralizeArmorSalvo = 12
suppressArmorSalvo = 3

destroyIIOSalvo = 3
neutralizeIIOSalvo = 3
suppressIIOSalvo = 3

destroyIDISalvo = 6
neutralizeIDISalvo = 4
suppressIDISalvo = 3

destroyAPCSalvo = 12
neutralizeAPCSalvo = 9
suppressAPCSalvo = 3

destroyLSVSalvo = 9
neutralizeLSVSalvo = 6
suppressLSVSalvo = 3

 # Probability of mission being:
percentDestroy = 0.3
percentNeutralize = 0.5
percentSuppress = 0.2

Shooter properties
 # projo velocity in x direction in m/min ((mvv*60)/sqrt(2))
meanProjectileVelocity = 100000
numberShooters = 6

Shooter1 properties (Crusader Battery)
platformType1 = FieldArtillery
acquireServiceDistribution1 = Normal
meanAcquireInterservice1 = 2.0
sigmaAcquire1 = 0.25
firingServiceDistribution1 = Normal
meanFiringInterservice1 = 0.25
sigmaFiring1 = 0.05
 # in rounds per minute
maxRateOfFire1 = 12
thePER1 = 1
thePED1 = 1
shooterXCoord1 = 12500.0

130

shooterYCoord1 = 70000.0
acquireServerStream1 = 3
firingServerStream1 = 4
numberRounds1 = 2520
shooterRange1 = 45000
burstRadius1 = 50
numberGuns1 = 4

Shooter2 properties (Crusader Battery)
platformType2 = FieldArtillery
acquireServiceDistribution2 = Normal
meanAcquireInterservice2 = 2.0
sigmaAcquire2 = 0.25
firingServiceDistribution2 = Normal
meanFiringInterservice2 = 0.25
sigmaFiring2 = 0.05
 # in rounds per minute
maxRateOfFire2 = 12
thePER2 = 1
thePED2 = 1
shooterXCoord2 = 25000.0
shooterYCoord2 = 70000.0
acquireServerStream2 = 5
firingServerStream2 = 6
numberRounds2 = 2520
shooterRange2 = 45000
burstRadius2 = 50
numberGuns2 = 4

Shooter3 properties (Crusader Battery)
platformType3 = FieldArtillery
acquireServiceDistribution3 = Normal
meanAcquireInterservice3 = 2.0
sigmaAcquire3 = 0.25
firingServiceDistribution3 = Normal
meanFiringInterservice3 = 0.25
sigmaFiring3 = 0.05
 # in rounds per minute
maxRateOfFire3 = 12
thePER3 = 1
thePED3 = 1
shooterXCoord3 = 37500.0
shooterYCoord3 = 70000.0
acquireServerStream3 = 7
firingServerStream3 = 8
numberRounds3 = 2520
shooterRange3 = 45000
burstRadius3 = 50
numberGuns3 = 4

Shooter4 properties
platformType4 = NSFS
acquireServiceDistribution4 = Normal
meanAcquireInterservice4 = 2.5
sigmaAcquire4 = 0.5
firingServiceDistribution4 = Normal
meanFiringInterservice4 = 0.5
sigmaFiring4 = 0.1
 # in rounds per minute
maxRateOfFire4 = 24
thePER4 = 10
thePED4 = 2
shooterXCoord4 = 6000.0
shooterYCoord4 = -40000.0
acquireServerStream4 = 9
firingServerStream4 = 0
numberRounds4 = 2400
shooterRange4 = 162000
burstRadius4 = 75
numberGuns4 = 2

131

Shooter5 properties
platformType5 = NSFS
acquireServiceDistribution5 = Normal
meanAcquireInterservice5 = 2.5
sigmaAcquire5 = 0.5
firingServiceDistribution5 = Normal
meanFiringInterservice5 = 0.5
sigmaFiring5 = 0.1
 # in rounds per minute
maxRateOfFire5 = 24
thePER5 = 10
thePED5 = 2
shooterXCoord5 = 12000.0
shooterYCoord5 = -40000.0
acquireServerStream5 = 1
firingServerStream5 = 2
numberRounds5 = 2400
shooterRange5 = 162000
burstRadius5 = 75
numberGuns5 = 2

Shooter6 properties
platformType6 = NSFS
acquireServiceDistribution6 = Normal
meanAcquireInterservice6 = 2.5
sigmaAcquire6 = 0.5
firingServiceDistribution6 = Normal
meanFiringInterservice6 = 0.5
sigmaFiring6 = 0.1
 # in rounds per minute
maxRateOfFire6 = 24
thePER6 = 10
thePED6 = 2
shooterXCoord6 = 18000.0
shooterYCoord6 = -40000.0
acquireServerStream6 = 4
firingServerStream6 = 5
numberRounds6 = 2400
shooterRange6 = 162000
burstRadius6 = 75
numberGuns6 = 2

the Weights
range = 0.125
thePER = 0.125
numberRounds = .5
FieldArtillery = 0.25
NSFS = 0.00

Run execute properties
stopEvent = TargetArrival
stopEventCount = 425

132

THIS PAGE INTENTIONALLY LEFT BLANK

133

BIBLIOGRAPHY

FM 100-5, “Operations,” Headquarters, Department of the Army, Washington, D.C., 14
June 1993.

United States Army, Weapon Systems, United States Army 1999, DIANA Publishing
Company, 1999.

Johns Hopkins University/Applied Physics Lab, Task Statement for NSFS Requirements
for US Army Future Combat System Objective Force, 08 March 2000, JHU/APL
Proprietary.

J.E. Rhodes - United States Marine Corps, Memorandum to the Chief of Naval
Operations from the United States Marine Corps on Naval Surface Fire Support
Requirements for Operational Maneuver from the Sea – 1999, 16 June 1999.

Sean D. Naylor, “Next up: Looking beyond Force XXI Army’s newest project takes
tactical look at warfare in the years between 2010 and 2025,” Army Times, 10 June 1996,
p. 18.

Brigadier General Edward T. Buckley Jr. – US Army, “Army After Next Technology:
Forging Possibilities into Reality,” available at http://www-cgsc-
army.mil/milrev/English/MarApr98/buckley.htm; Internet; accessed 21 November 2000.

Colonel Michael Mehaffey – US Army, “Vanguard of the Objective Force,” available at
http://www-cgsc-army.mil/milrev/English/SepOct00/meha.htm; Internet; accessed 15
November 2000.

Major General Joseph M. Cosumano Jr. – US Army, “Transforming the Army to a Full
Spectrum Force,” available at http://www.tradoc.army.mil/transformation…ges/
transforming_the_army_to_a_full_.htm; Internet; accessed 20 November 2000.

Army Chief of Staff General Eric K. Shinseki, “Army Vision address at Reserve Officers
Association Mid-Winter Conference 1999,” available at http://jwadweb/abig/5.htm; JHU
Intranet, accessed 15 November 2000.

Army Chief of Staff General Eric K. Shinseki, “Statement on Army Readiness to 106th
Congress,” available at http://gopher .house.gov/hasc/testimony/106thcongress/00-02-
10shinseki.htm; Internet; accessed 20 November 2000.

Army Chief of Staff General Eric K. Shinseki, “Statement of Army Vision,” available at
http://www.senate.gov/~appropriations/defense/testimony/shinseki.htm; Internet;
accessed 20 November 2000.

Crusader 155MM, The WebSite for Defence Industries – Army, available at
http://www.army-technology.com/projects/crusader/

134

Paladin 155MM, The WebSite for Defence Industries – Army, available at
http://www.army-technology.com/projects/paladin/
A.D. Zimm, R.P. O’Neil, D.W. Kerchner, and E.A. Smith, “Draft - Naval Requirements
and Capabilities Study,” 13 January 2000, Johns Hopkins University Applied Physics
Lab., pp. 65-72.

Raymond Lisiewski and Edward C. Whitmann, “DD21: A New Direction in Warship
Acquisition,” Paper on genesis of DD-21 operational requirements, May 2000, available
at http://dd21.crane.navy.mil/pdf%20files/DD21Whitman.pdf, accessed 20 November
2000.

Le, Hung B., “Advanced Naval Surface Fire Support Weapon Employment Against
Mobile Targets.” Masters Thesis, Naval Postgraduate School, December 1999.

Armstrong, James E., SE401/SE402, Introduction to Systems Design, Course Notes, West
Point, New York: Department of Systems Engineering, 1999.

Averill M. Law and W. David Kelton, Simulation Modeling and Analysis, 3d ed.,
(Boston: McGraw-Hill, 2000).

G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, An Introduction
to Design, Data Analysis, and Model Building, (New York: John Wiley and Sons, 1978).

Jay L. Devore, Probability and Statistics for Engineering and the Sciences, 4th ed.,
(Pacific Grove: Duxbury Press, 1995).

Douglas C. Montgomery, George C. Runger, and Norma F. Hubele, Engineering
Statistics, (New York: John Wiley and Sons, 1998).

John R. Canada and William G. Sullivan, Economic Multiattribute Evaluation of
Advanced Manufacturing Systems, (Englewood Cliffs: Prentice Hall, 1989).

James N. Eagle, II, Radially Fleeing Target Animation in MATLAB, available at:
http://spica.or.nps.navy.mil/searchdocs/demos/rad_flee_norm.ani.gif, accessed 25 April
2001.

Stork, Kurt A., “Sensors in Object Oriented Discrete Event Simulation.” Masters Thesis,
Naval Postgraduate School, September 1996.

135

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2

8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library...2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Mr. Edward A. Smyth..1
Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Road
Laurel, Maryland 20723-6099

4. Mr. John F. Keane..1
Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Road
Laurel, Maryland 20723-6099

5. Mr. Stephen M. Orloff ...1

Joint Warfare Analysis Department, JHU/APL
Johns Hopkins Road
Laurel, Maryland 20723-6099

6. Lieutenant Colonel Eugene P. Paulo, Pe ...2
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Arnold H. Buss. Bu..2
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

8. Major Juan K. Ulloa...2
113 Wildplum Road
Lawton, OK 73501

	edoc_994381718.sf298.pdf
	Form SF298 Citation Data

